=RogueWave

Accelerating Great Code

IMSL® C MATH LIBRARY
Version 8.6.0

ROGUE WAVE SOFTWARE WWW.ROGUEWAVE.COM

© 1970-2016 Rogue Wave Software, Visual Numerics, IMSL and PV-WAVE are registered trademarks of Rogue
Wave Software, Inc. in the U.S. and other countries. JMSL, JWAVE, TS-WAVE, PyIMSL are trademarks of Rogue
Wave Software, Inc. or its subsidiaries. All other company, product or brand names are the property of their
respective owners.

IMPORTANT NOTICE: Information contained in this documentation is subject to change without notice. Use
of this document is subject to the terms and conditions of a Rogue Wave Software License Agreement,
including, without limitation, the Limited Warranty and Limitation of Liability. If you do not accept the terms
of the license agreement, you may not use this documentation and should promptly return the product for a
full refund. This documentation may not be copied or distributed in any form without the express written
consent of Rogue Wave.

= RogueWave

Contents

I

Introduction 1
IMSL C MaEN LIDIAIY oo 2
Organization of the DOCUMENTATION.......c.iiiiiieirecs s 3
FINding the RIgNT FUNCEION 1. 4
NGMINE CONVENTIONS 1.ttt 5
Getting Started and the IMSLN Il ..o 6
Error Handling, Underflow, Overflow, and Document EXamples ... 7
Memory Allocation fOr OULPUL AMTAYSc.oviiiiiieiieieieee e 8
PIINTING RESUITS 1. 9
COMPIEX ATTENMETIC 1.t 10
IMHSSING VAIUBS ... 11
Passing Data to User-Supplied FUNCHONS ..o 12
Return Values from User-Supplied FUNCLONS ..o 14
TRFEAA SAE USAZE ..o 15
OPENIMP USGEE ...ttt 16
Vendor Supplied LiDraries USABE ... 17
o U SER ceeeeeeehbbtea 18
MALTIX STOTAZE MOES ... 21

Chapter 1 Linear Systems 31
UM CEIONS 1ottt 31
USGEE NOTES ..ottt 33
I SOl BB e 36
lIN_SOI_ZEN (COMPIEX). ...t 45
TN _SOI_POSAET .. 52
lIN_SOI_POSAET (COMPIEX)..... it 58
NSOl _ZEN_DANG. . 64
liN_s0l_gen_Dand (COMPIEX) ... 70
lIN_SOI_POSAET_DANG. ... 76
lin_sol_posdef_band (COMPIEX) ... 87
lIN_SOl_ZEN_COOMAINALE ... 87
lin_sol_gen_coordinate (COMPIEX) ... 99
SUPDTTU ettt 108
SUPETTU (COMPIEX) 1ot 123

= ROQUEWFWE ROGUEWAVE.COM Contents i

SUPTTU_SIMID ¢ 138

SUPETTU_SMIP (COMPIEX) ..t 150
liN_SOl_pOSAel_COOMAINATE ... 163
lin_sol_posdef_coordinate (COMPIEX) ..o 172
SPAISE_CNOIESKY _SIMID ..o 181
sparse_cholesky_SmpP (COMPIEX) ... 191
lIN_SOI_ZEN_MIN_I@SIAUA! ..o 201
NSOl BT T s 207
Nl EaST _SQUAMES_ZBN ...ttt 214
NONNEE_EAST_SGUAIES ...ttt 223
1S _lIN_CONSTIAINTS 1. 230
NONNEZ_MATIIX_fACTOMIZATION ..o 235
I SV N e 240
lIN_SVA_ZEN (COMPIEX)..iiiiiii et 247
N _SOI_NMONNEEACT ... 254
Chapter 2 Eigensystem Analysis 261
FUNCTIONS 11kttt 261
USGEZE NOTES .ottt 262
I BRI o 265
I N (COMPIEX). ettt 269
Bl S ottt 273
€12 NN (COMPIEX) 1ot 277
UG SYIMIZEI e 281
BOIIIE ekt 285
ZENEIZ (COMPIEX) .ottt 290
Chapter 3 Interpolation and Approximation 295
FUNCTIONS 11ttt 295
USGEE INOTES ...ttt 297
CUD_SPINE_INTEIP_E_CNA .o 306
CUD_SPINE_INTEIP_SNADE ..o 315
CUD _SPIINE_ECD e 321
CUD_SPINE_VAIUEG ... 329
CUD_SPHNE_INTEEIAN ..o 333
SN _INEEID ot 335
SPHNE_KNOTS 1.t 341
SPHNE_2A_INTEIP ot 346
SPHNE_VAIUE .ot 353
SPHNE_INTEEIAN .. 357
SPHNE_2A_VAIUE ... 360
SPHNE_2A_INTEEIAN ..ot 365
SPHNE_NA_INTEID 1o 368
USET_TCN_IEAST_SQUATIES ..ot 373
SPHNE_IEAST _SQUATIES ..ot 382
SPHNE_20_1EAST_SQUATIES ..ot 389

=RogueWave

CUD_SPINE_SMOOTN 1. 395

SPHNE_ISQ_CONSIIAINE ... 400
SMNOOTN_TA AL ..o 409
SCATEEIRU_2A _INTEI oot 414
(Yo | I o Juu <] =le I PO 419
FAAIAI_EVAIUATE ..., 427
Chapter 4 Quadrature 431
FUNCEIONS e ettt 431
USGEZE NOTES .ottt 432
I TN SINE e 435
T TCN_SINE T e 440
1L (el SRR 448
N TN _SINE PES et 453
INT_TCN_QIE TO it 459
1L (el T L TR 464
I T T LTI e 469
I O OUIIOT L, 475
INE_TCN_CAUCNY Lot 480
Ta i (e aI] 2 ae Yo] d o VTR USSR RRRRO 485
I O 20 e, 490
T TCN_SING 20 et 496
I TCN_SINE B s 505
TN NYPEI_TECT oot 516
I TN gMIC et 521
BAUSS_QUAA_TUIB ..ot 526
FCN_AEIIVATIVE .o e 531
Chapter 5 Differential Equations 535
FUNCEIONS oottt ettt 535
USEE NOTES ..o e 536
OTE_TUNZE_KUTTQ ...ttt 539
O _ATAIMS_ZEAT .t 546
DVP_TINITE_AITEIENCE oo 547
differential_algebraiC @S ... 560
EA_PELZONA BRI .. 577
0 ATAMS_ 2NA 0T TR oottt 578
00E_A0AMS_KIOZN oo 579
INtrodUCtioN O PAE_TA MG oo 589
DA T AN e 592
PAE_METNOA_OT_IINES ..o 630
Modified_MetNOA_OFf INES ..., 631
FOYNIMIAN_KGC 1. 650
FEYNMAN_KAC_EVAIUATE ..o 688
FAST_POISSON_20 ..o 692

=RogueWave

Chapter 6 Transforms 699

FUNCEIONS e e 699
USBEE NOTES ..ot e 700
TTELT @A et 702
LRS- L LT PR 707
L LCOMIPIEX ...t 710
T COMIPIEX LINIT ot 714
LR e X AT PO 717
i el X a TS L PO OTOPSP R PRRO 720
S I B ettt 723
LAY R TSI Y1 OO 726
L 20 COMIPIEX it 729
CONVOIULION <ot 736
CONVOIULION (COMPIEX) ...t 744
INVEISE_IAPIACE it 751
Chapter 7 Nonlinear Equations 759
FUNCEIONS 1ottt ettt ettt 759
USGEE INOTES ...ttt 760
ZETOS_POIY o 761
ZEr0OS_POIY (COMPIEX) 1.t 764
ZE O UN VAT AL ettt ettt 767
ZEIOS TUNCEION e ettt ettt ettt ettt 771
ZBIOS _SYS_ UMttt ettt ettt btttk E ettt bttt 777
Chapter 8 Optimization 783
FUNCEIONS ettt ettt ettt 783
USGEZE INOTES ..ttt 784
TN _UNCON e e, 787
PN _UNCON GBIV oottt ettt ettt ettt 792
MIN_UNCON_ZOIARN .ttt 797
NN UNCON MUITIVAT oo ettt ettt ettt 801
MIN_UNCON_POIYTOPE 1.ttt 809
NONIN_IEAST_SQUAIES ...ttt 814
FRAA _IMIDS et 825
[N AT _PrOZIAMIMINE ..ottt 834
I DT O8 e 841
QUAATATIC PO ettt 847
SIS _IIN_PIOE ..t 853
SPAISE_QUAAIGTIC_PIOE et 867
TN _CON_ZEN_IN ottt 882
DOUNAEA_|EAST SQUAIES ... 890
CONSEFAINEA_NID 1o 899
JACODIAN ot 908

=RogueWave

Chapter 9 Special Functions 923

FUNCEIONS e e 923
USBEE NOTES ..ot e 927
BT e 929
B C e e, 931
B e e e, 934
BT e 936
Y RN T SRR 938
Y 0NV Y= 941
DB e, 944
L0 DO et 947
DETA_INCOMPIETE ..t 949
BAIMIMNG ottt Lttt 951
O BAMIMIA ettt 954
SAMMIA_INCOMIPIETE L.t 957
DSttt 960
ST et 962
DS Sl 0 e 964
DS S T e, 967
D S S X e e 969
[0 TST3Y=1 I 4 F SRRSO 972
DS Sl Y T e e 975
[01STSY=Y N 0 USRS 977
[0 1ST3Y<Y I L SRR USSR 979
DESSEI_EXP_IO o 981
[0 7ST3t= Y I SRRSO 983
DESSEI_EXP_IT o 985
DS Sl X oo 987
[0 TST3Y=Y [(O TSSOSO 989
DESSEI_EXP_KD . 991
DS Sl KT e e e 993
PSS EXP_KT s 995
[0 1STY< SO SRRSO 997
Rl PEIC INTEEIAl K e 999
el PEIC INEEEIAl_E o 10071
el P INTEEIAl_RF s 1003
EllTPLICINTEEIAl_RD ..o 1005
EIlTPLICINTEEIAI_R] s 1007
ellIPLICNTEEIAI_RC .o 1009
rESNEIINTEEIAI_C oo 1011
frESNEI_INTEEIALLS <o 1013
QITY AT 1o 1015
QI B e 1017
QINY_AT_AEIIVATIVE L.t 1019
QINY_BI_AEIIVATIVE ..o 1021
KEIVIN_DBIO .o e e e, 1023
S I T o T G RSSO 1025

=RogueWave

K IV I IO ettt 1027

K IV I IO e 1029
KEIVIN_DEIO_AEIIVATIVE ... 1031
KEIVIN DD O IVATIVE ..ottt ettt 1033
KEIVIN KOO AOIIVATIVE ..ottt 1035
KEIVIN_KEIO_AEIIVATIVE ... 1037
(aTeTdn =11l | EFT O USP O 1039
el Ea e I LRI YTl | TSRS USURSSRRRON 1041
CRI_SQUANEA_CAT ... 1043
ChI_SQUAred_INVEIrSE_COT . oo 1046
L e e 1048
NIV IS Tl e 1050
D AT e 1052
L LY ST YT ele | OSSOSO 1055
BAMMIA_CAT e 1057
D N OMUAl_CAT e e 1059
NYPErgEOMELIIC_COT ot 1061
POISSON_CAT ..ottt 1063
DA AT e 1065
[o1<] = I RNV TSI oo | OSSR S RS RUSRRPRRRON 1067
DIVariate_NOIMNAlI_CAT .o 1069
CUMMUIAEIVE _INEEIESE ..ot 1071
CUMUIGEIVE_PIINCIPAL s 1073
EPreCIALION_AD ... 1075
AEPreCiatioN_AD ... 1078
EPIrECIATION_SIN oot 1081
EPIrECIATLION_SYA ..o 1083
EPreCiatiON_VAD ... 1085
(olo]|F=Y gle [=Yai 1 0 =1 SRR OO RSOSSN 1088
AONAI_TFACTION L. 1090
BT LIV AL oo 1092
TULUT VAU e e e e ettt e, 1094
fULUre_Value_SCREAUIE ..., 1096
INTEIEST PAYIMENT ¢ttt 1098
INTEIEST AT _ANNUITY c.ititiiiiit ettt 1100
INTEINALrate_Of FETUIM Lo 1103
INEEINAl_rate_SCREAUIE ... e e, 1105
anleleliiTste M1 aluc]aat=| = L (=TT T TSSO SRRSO 1108
NET_PIESENTVAIUER ...t 1110
DOIMINA T AL e e, 1112
NUMDET_OT_DEITOUS ...t 1114
DAY ITIEINIT .tttk 1116
PIESENT VAIUE 1.ttt 1118
Present_value_SCREAUIE ... 1120
PIINCIPAL_PAYIMENT ..o 1122
ACCI_INTEIEST MIATUIITY . 1124
ACCT_INEErEST_PEITOMIC vt 1126

=RogueWave

DONA_qUIVAIENT VI ... 1129

COMVEXITY 11ttt ettt 1131
COUPON_AAYS oottt 1134
COUPON_NMUMDET 1.ttt 1136
dayS_DEfOre_SETEMENT ... 1138
dAYS_TO_NEXE_COUDON ...t 1140
depPreCiatioN_AMOTTEEICT ..ottt 1142
depreciatioN_amMOTTINC ... 1144
ISCOUNT_PIICE oottt 1146
ISCOUNT AT ..ttt 1148
ISCOUNTYIIA oot 1150
AUITION 1. 1152
INTEIEST MATE_SECUIILY oottt 1155
[anlole liil=Te Mo UL =1 [o] o FUNURT TSROSO 1157
NEXT_COUPON_AAEE ..ottt 1159
PreVioUS_COUPON_AATEottt 1161
DI ettt 1163
PITCE_MIGTUITLY 11ttt 1166
FECEIVEA_MATUITLY 11ttt 1169
ErEASUNY_DIH_DIICE o 1171
EreaSUNY_DIlLYIEIA ..o 1173
YEAT_TTACTION 1ot 1175
VIEIA_MIQTUITTY 1ottt 1177
VICIA_POITOIC ..o 1180

Chapter 10 Statistics and Random

Number Generation 1183
FUNCEIONS 11ttt ettt 1183
USBEZE NOTES ..ttt 1184
SIMPIE_STATISTICS 1.t 1186
EADIE_ONEWAY ... 1192
CRI_SQUANEA_TOST . 1197
COVAITANEES .tttk 1207
TREIESSION L.ttt bbbttt 1214
POIY _TEEIOSSION ..ttt 1223
TANKS ¢ 1232
FANAOM_SEEA_ZOT ..t 1240
(1 ale [e]naIRToTaTe HT<) TSP USURRSRRRON 1242
FANAOM_OPTION 1.ttt 1243
FANAOM_UNITOII 1o 1244
(=1alele]aa i ale]a aa T 1 FETrRTTU TSRO URUR PSRRI 1247
FANAOM_POISSOM ..ttt 1249
FANTOM_EAMNIMIA 1.ttt ettt 1257
(=1 ale (o] a1 o1=] 1= TRUTRTT RO SORORRPRRRON 1254
FANAOM_EXPONENTIAL ..ot 1257
QUM _NMEXE_DOINT ..t 1259

=RogueWave

Chapter 11 Printing Functions 1263

FUNCEIONS e e ettt 1263
WWETEE MNIATIIX e et 1264
DA ettt 1271
WITEE_OPTIONS .ttt 1273
Chapter 12 Utilities 1277
FUNCEIONS e e e ettt 1277
OUTPUL_TIIE ot 1279
VBISION et ettt 1284
(L LT TP OP T OPRPOPRPRPRPRPN 1286
ATE_TO_AAYS e 1287
TAYS_LO_AATE s 1289
Bl T O _OPTIONS e 1297
Bl T O LY D ettt 1298
EITON _MESSAEE 1.ttt ettt ettt 1299
LY o] g (016 [T USROS RRURPRRRIN 1301
INItIAliZE_errOr_NANAIET L. e 1303
SET_USEr_fCN_TETUIM_TIAE .. oot 1305
ITIALIZE e e e e e, 1310
T e, 1311
OB e 1313
LS e e e 1315
MNP _OPTIONS ettt 1316
CONSEANT ettt ettt 1318
MACNINE (INTEZEI) oottt 1322
MACHTINE (FIOAL) oo e ettt 1325
Y] S OO EOOEOROTEORPOTRPOPORRP 1328
SOMT (MBI ottt 1331
(VLT a o] g aT] 0 o NP O OO OO OO OUOPOTRR 1334
VECEOr_NOIMN (COMPIEX) 1.ttt 1337
AT MU T e e ettt ettt ettt 1341
MAT_MUI_IECE (COMPIEX) it 1346
=1 a 10 I =Tl o Y= e ERUR TP PSPRPRRRRPN 1357
mat_mul_rect_band (COMPIEX) ..o 1356
MAt_MUI_reCE COONAINATE ..o 1367
mat_mul_rect_coordinate (COMPIEX)ciiiiiiieie e 1366
(a1 To o 1 oY= aTe IEUTRUTRUU SRRSO S PRSRON 1372
Mat_add_band (COMPIEX) ..o 1376
MAT_adA_COOTAINMATE ... oo, 1381
mat_add_coordinate (COMPIEX) ..o 1385
MNATTIX _NOTTY Lottt ettt 1390
MATIX_NOIMMN_DANA e e, 1393
MALMIX MO COOTNTINATE oottt ettt 1397
ENErate_teST_DANG .o 14071
generate_test_Dand (COMPIEX)....iiii e 1404

=RogueWave

generate_teSt_COOTAINATE ..o
generate_test_coordinate (COMPIEX) ..o
Programming Notes for Using NVIDIA® CUDA™ TOOIKItcccccccccoeeerreerir.
IMPIEMENTATION Lo
CUA_EOT ettt
CUAB_SBE et
U T e et

Reference Material

CONTBINTS Lottt
Sl Bl O S e
Complex Data Types and FUNCLIONS ..o

Appendix A: References
Appendix B: Alphabetical Summary of Functions
Product Support

CoNtacting IMSL SUPPOIT ..o

Index

=RogueWave

Xi

=RogueWave

—=— Introduction

Table of Contents

IMSL C Math Library. . ..o 2
Organization of the DOCUMENTAtION 3
Finding the Right FUNCLIONo 4
NamiNg CONVENTIONS . . oot e 5
Getting Started and the imslh file. ... 6
Error Handling, Underflow, Overflow, and Document Examples. 7
Memory Allocation for OULPUL AITayso oo 8
PriNtNg RESUILS. . . 9
Complex AritNmMETiC. . ..o 10
MISSINE ValUeS . 11
Passing Data to User-Supplied FUNCEIONSo e 12
Return Values from User-Supplied FUNCEIONS. ... oo 14
Thread Safe USage . ..ot 15
OPENMP USage. . o oo 16
Vendor Supplied LIbraries USageot 17
Gt USagE . o oo 18
Matrix StOrage MOAESo o 21

EE Rogygmg\ﬁ Introduction 1

IMSL C Math Library

The IMSL® C Math Library, a component of the IMSL® C Numerical Library, is a library of C functions useful in sci-
entific programming. Each function is designed and documented for use in research activities as well as by
technical specialists. A number of the example programs also show graphs of resulting output.

= Rogygmq\f‘e; IMSL C Math Library Introduction 2

Organization of the Documentation

This manual contains a concise description of each function with at least one example demonstrating the use of
each function, including sample input and results. All information pertaining to a particular function is in one
place within a chapter.

Each chapter begins with a table of contents listing the functions included in the chapter followed by an introduc-
tion. Documentation of the functions consists of the following information:

Section Name: Usually, the common root for the type float and type double versions of the
function is given.

Purpose: A statement of the purpose of the function.
Synopsis: The form for referencing the subprogram with required arguments listed.

Required Arguments: A description of the required arguments in the order of their occurrence,
as follows:

— Input: Argument must be initialized; it is not changed by the function.

— Input/Output: Argument must be initialized; the function returns output through this
argument. The argument cannot be a constant or an expression.

— Output: No initialization is necessary. The argument cannot be a constant or an expres-
sion; the function returns output through this argument.

Return Value: The value returned by the function.

Synopsis with Optional Arguments: The form for referencing the function with both required
and optional arguments listed.

Optional Arguments: A description of the optional arguments in the order of their occurrence.

Description: A description of the algorithm and references to detailed information. In many cases,
other IMSL functions with similar or complementary functions are noted.

Examples: At least one application of this function showing input and optional arguments.

Errors: Listing of any errors that may occur with a particular function. A discussion on error types is
given in the User Errors section of the Reference Material. The errors are listed by their type as
follows:

— Informational Errors: List of informational errors that may occur with the function.
— Alert Errors: List of alert errors that may eccur with the function.
— Warning Errors: List of warning errors that may occur with the function.

— Fatal Errors: List of fatal errors that may occur with the function.

= Rogygmq\{q Organization of the Documentation Introduction

3

Finding the Right Function

The IMSL C Math Library is organized into chapters; each chapter contains functions with similar computational
or analytical capabilities. To locate the right function for a given problem, you may use either the table of contents
located in each chapter introduction, or in Alphabetical Summary of Functions at the end of this manual.

Often the quickest way to use the IMSL C Math Library is to find an example similar to your problem and then
mimic the example. Each function in the document has at least one example demonstrating its application.

= Rogyngq\(e: Finding the Right Function Introduction 4

Naming Conventions

Most functions are available in both a type float and a type double version, with names of the two versions shar-
ing a common root. Some functions also are available in type int, or the IMSL-defined types f complex or
d_complex versions. A list of each type and the corresponding prefix of the function name in which multiple type
versions exist follows:

Type Prefix

float imsl f
double imsl d_
int imsl i
f complex imsl c
d_complex imsl z

The section names for the functions only contain the common root to make finding the functions easier. For
example, the functions ims1 f 1in sol genandimsl d lin sol gen can be found in section
lin sol genin Chapter 1,“Linear Systems.”

Where appropriate, the same variable name is used consistently throughout a chapter in the IMSL C Math Library.
For example, in the functions for eigensystem analysis, eval denotes the vector of eigenvalues and n_eval
denotes the number of eigenvalues computed or to be computed.

When writing programs accessing the IMSL C Math Library, the user should choose C names that do not conflict
with IMSL external names. The careful user can avoid any conflicts with IMSL names if, in choosing names, the fol-
lowing rule is observed:

Do not choose a name beginning with “ims1 " in any combination of uppercase or lowercase
characters.

= R{ng?mq\{q Naming Conventions Introduction 5

Getting Started and the imsl.h file

Getting Started

To use any of the IMSL C Math Library functions, you first must write a program in C to call the function. Each
function conforms to established conventions in programming and documentation. We give first priority in devel-
opment to efficient algorithms, clear documentation, and accurate results. The uniform design of the functions
makes it easy to use more than one function in a given application. Also, you will find that the design consistency
enables you to apply your experience with one IMSL C Math Library function to all other IMSL functions that you
use.

The imsl.h File

The include file <ims1.h> is used in all of the examples in this manual. This file contains prototypes for all IMSL-
defined functions; the spline structures, Imsl_f ppoly, Imsi_d_ppoly, Imsl_f spline, and Ims|_d_spline; enumerated
data types, Imsl_quad, Ims|_write_options, Imsl_page_options, Imsl_ode, and Ims/_error; and the IMSL-defined data
types f complex (which is the type float complex) and d_complex (which is the type double complex).

= R{nggmq\{q Getting Started and the imsl.h file Introduction 6

Error Handling, Underflow, Overflow, and
Document Examples

The functions in the IMSL C Math Library attempt to detect and report errors and invalid input. This error-han-
dling capability provides automatic protection for the user without requiring the user to make any specific
provisions for the treatment of error conditions. Errors are classified according to severity and are assigned a
code number. By default, errors of moderate or higher severity result in messages being automatically printed by
the function. Moreover, errors of highest severity cause program execution to stop. The severity level, as well as
the general nature of the error, is designated by an “error type” with symbolic names IMSL FATAL,

IMSL WARNING, etc. See the User Errors section in the “Reference Material” for further details.

In general, the IMSL C Math Library codes are written so that computations are not affected by underflow, pro-
vided the system (hardware or software) replaces an underflow with the value zero. Normally, system error
messages indicating underflow can be ignored.

IMSL codes are also written to avoid overflow. A program that produces system error messages indicating over-
flow should be examined for programming errors such as incorrect input data, mismatch of argument types, or
improper dimensions.

In many cases, the documentation for a function points out common pitfalls that can lead to failure of the
algorithm.

Output from document examples can be system dependent and the user’s results may vary depending upon the
system used.

E: ROQEJ?\MQ\{E: Error Handling, Underflow, Overflow, and Document Examples Introduction 7

Memory Allocation for Output Arrays

Many functions return a pointer to an array containing the computed answers. By default, an array returned as
the value of a C Numerical Library function is stored in memory allocated by that function. To release this space,
use ims1l free. Toreturnthe array in memory allocated by the calling program, use the optional argument

IMSL RETURN USER, float a[]

In this way, the allocation of space for the computed answers can be made either by the user or internally by the
function.

Similarly, other optional arguments specify whether additional computed output arrays are allocated by the user
or are to be allocated internally by the function. For example, in many functions in “Linear Systems,” the optional
arguments

IMSL INVERSE USER, float inva[] (Output)
IMSL INVERSE, float **p inva (Output)

specify two mutually exclusive optional arguments. If the first option is chosen, the inverse of the matrix is stored
in the user-provided array inva.

In the second option, float **p inva refers to the address of a pointer to the inverse. The called function allo-
cates memory for the array and sets *p_inva to point to this memory. Typically, float *p_inva is declared,
&p 1invaisused as an argument to this function. Use ims1 free (p_inva) to release the space.

= Rogypmq\{q Memory Allocation for Output Arrays Introduction 8

Printing Results

Most functions in the IMSL C Math Library do not print any of the results; the output is returned in C variables.

The IMSL C Math Library contains some special functions just for printing arrays. For example, write matrixis
a convenient function for printing matrices of type float. See Printing Functions for detailed descriptions of these

functions.

= R{nggﬂg\{q Printing Results Introduction 9

Complex Arithmetic

Users can perform computations with complex arithmetic by using IMSL predefined data types. These types are
available in two floating-point precisions:

f complex for single-precision complex values

d complex for double-precision complex values

A description of complex data types and functions is given in the Reference Material.

= R‘Dgygmq\{eg Complex Arithmetic Introduction 10

Missing Values

Some of the functions in the IMSL C Math Library allow the data to contain missing values. These functions recog-
nize as a missing value the special value referred to as “not a number,” or NaN. The actual value is different on
different computers, but it can be obtained by reference to the IMSL function ims1 £ machine, described in
Chapter 12, “Utilities.”

The way that missing values are treated depends on the individual function and is described in the documenta-
tion for the function.

EE Rog':]?w”q\tes Missing Values Introduction 11

Passing Data to User-Supplied Functions

In some cases it may be advantageous to pass problem-specific data to a user-supplied function through the

IMSL C Math Library interface. This ability can be useful if a user-supplied function requires data that is local to the
user's calling function, and the user wants to avoid using global data to allow the user-supplied function to access
the data. Functions in IMSL C Math Library that accept user-supplied functions have an optional argument(s) that

will accept an alternative user-supplied function, along with a pointer to the data, that allows user-

specified data

to be passed to the function. The example below demonstrates this feature using the IMSL C Math Library func-

tion imsl f min uncon and optional argument IMSL. FCN_W_DATA.
Example

#include <imsl.h>
#include <math.h>
#include <stdio.h>

float fcn w data(float x, void *data);

int main ()
{
float a = -100.0;
float b = 100.0;
float £fx, Xx;
float usr data[] = {5.0, 10.0};
x = imsl f min uncon (NULL, a, b,
IMSL FCN W DATA, fcn w data, usr_data,
0);
fx = fcn w data(x, (void*)usr data);

printf ("The solution is: %8.4f\n", x);
printf ("The function evaluated at the solution is: %8
£x);

*

User function that accepts additional data in a (void*)
This (void*) pointer can be cast to any type and derefer

For example, to get at the data in this example
((float)data) and usr data[0] contains the value 5

* *((float*)data+l) and usr datal[l] contains the value 10

*/

float fcn w data(float x, void *data)

{

X% % X X O

float *usr data = (float*)data;

.4f\n",

pointer.
enced to

get at any sort of data-type or structure that is needed.

.0
0

= R{nggmq\{q Passing Data to User-Supplied Functions

Introduction 12

return exp(x) - usr data[0]*x + usr datal[l];

=
= Rogygmq\{e; Passing Data to User-Supplied Functions Introduction 13

Return Values from User-Supplied
Functions

All values returned by user-supplied functions must be valid real numbers. It is the user's responsibility to check
that the values returned by a user-supplied function do not contain NaN, infinity, or negative infinity values.

In addition to the techniques described below, it is also possible to instruct the IMSL C Numerical Library to
return control to the calling program in case an unrecoverable error occurs within a user-supplied function. See
function imsl set user fcn return flag for a description of this feature.

Example

#include <imsl.h>
#include <math.h>

void fcn (int, int, float[], floatl[]):;
int main ()
{
int m=3, n=1;
float *result, £x[3];
float xguess[]={1.0};
result = imsl f nonlin least squares(fcn, m, n, IMSL XGUESS,
xguess, 0);
fcn(m, n, result, fx);
/* Print results */
imsl f write matrix("The solution is", 1, 1, result, 0);
imsl f write matrix("The function values are", 1, 3, fx, 0);

void fcn(int m, int n, float x[], float fI[])
{

int 1i;
float yI[3] = {2.0, 4.0, 3.0};
float t[3] = {1.0, 2.0, 3.0};
for (i=0; i<m; i++)
{
/* check for x=0
do not want to return infinity to nonlin least squares */
if (x[0] == 0.0) {
f[i] = 10000.;
} else {

fli] = t[1]1/x[0] - y[i];

=RogueWave

Return Values from User-Supplied Functions Introduction

Thread Safe Usage

The IMSL C Math Library is thread safe based on OpenMP. That means it can be safely called from a multi-
threaded application if the calling program adheres to a few important guidelines. In particular, IMSL C Math
Library's implementation of error handling and I/0 must be understood.

Error Handling

C Math Library's error handling in a multithreaded application behaves similarly to how it behaves in a single-
threaded application. The major difference is that an error stack exists for each thread calling C Math Library
functions. The result of separate error stacks for each thread is greater control of the error handler options for
each thread. Each thread can set its own options for the C Math Library error handler using

imsl error options. For an example of setting error handler options for separate threads, see Chapter 12,
Utilities, Example 3 of ims1 error options.

Routines that Produce Output

A number of routines in C Math Library can be used to produce output. The function ims1 output file can
be used to control the file to which the output is directed. In an application with a single thread of execution, a
single callto ims1 output file canbe used to set the file to which the output will be directed. In a multi-
threaded application each thread must call ims1 output file to change the default setting of where output
will be directed. See the Utilities chapter, Example 2 of ims1 output file for more details.

= Rogypmq\{q Thread Safe Usage Introduction 15

OpenMP Usage

Thread safety of the IMSL C Numerical Library is based on OpenMP. Users of the IMSL C Numerical Library are
also able to leverage shared-memory parallelism by means of native support for the OpenMP API specification
within parts of the Library. Those parts are flagged by the OpenMP icon shown below.

OpenMP

Parallelism in OpenMP is implemented by means of threads. In the OpenMP programming model, it is assumed
that memory is shared among threads, such as in multi-core machines. These threads are spawned by OpenMP
in response to directives embedded in source code.

The Library's use of OpenMP is largely transparent to the user. Codes that have been enhanced with OpenMP
directives will still work properly in serial execution environments. Error handling routines have been extended so
that the most severe error during a parallel run will be returned to the user.

OpenMP is used by the Library in these main ways:

1. Toimplement thread safety within the C Numerical Library.
2. To speed up computationally intensive functions by exploiting data parallelism in their processing.

3. To parallelize the evaluation of user-supplied functions in routines that use them, e.g. in numerical integra-
tion routines.

In the last case, the user must explicitly signal to the Library that the user-supplied functions themselves are
thread-safe, or by default the user’s function(s) will not evaluate in parallel. The utility ims1 omp options allows
the user to assert that all routines passed to the library are thread-safe.

Thread safety implies that function(s) may be executed simultaneously by multiple threads and still function cor-
rectly. Requiring that user-supplied functions be thread-safe is crucial, because the different threads spawned by
OpenMP may call user-supplied functions simultaneously, and/or in an arbitrary order, and/or with differing
inputs. Care must therefore be taken to ensure that the parallelized algorithm acts in the same way as its serial
“ancestor”. Functions whose results depend on the order in which they are executed are not thread-safe and are
thus not good candidates for parallelization; neither are functions which access and modify global data.

Specifications of the OpenMP standards are provided at (http://openmp.org/wp/).

= R{nggmq\{q OpenMP Usage Introduction 16

http://openmp.org/wp/

Vendor Supplied Libraries Usage

The IMSL C Numerical Library contains functions which may take advantage of functions in vendor supplied librar-

ies such as Intel's® Math Kernel Library (MKL) or Sun's™ High Performance Library. Functions in the vendor
supplied libraries are finely tuned for performance to take full advantage of the environment for which they are
supplied. For these functions, the user of the IMSL C Numerical Library has the option of linking to code which is
based on either the IMSL legacy functions or the functions in the vendor supplied library. The following icon in the
function documentation alerts the reader when this is the case:

RN CE

Details on linking to the appropriate IMSL Library and alternate vendor supplied libraries are explained in the
online README file of the product distribution.

= Rogygmq\f‘e; Vendor Supplied Libraries Usage Introduction 17

C++ Usage

IMSL C Numerical Library functions can be used in both C and C++ applications. It is also possible to wrap library
functions into C++ classes.

The function ims1 f int fcn sing computes the integral of a user defined function. For C++ usage the user
defined function is defined as a member function of the abstract class IntFcnSingFunction defined as
follows.

#include <imsl.h>
#include <math.h>
finclude <stdio.h>

class IntFcnSingFunction

{
public:

virtual float f(float x) = 0;
}i

The function ims1 f int fcn singiswrapped as the C++ class IntFenSing. This implementation uses
the optional argument, IMSL_FCN_W DATA, to call Local function whichin turn calls the method £ to
evaluate the user defined function. For simplicity, this implementation only wraps a single optional argument,
IMSL MAX SUBINTER, the maximum number of subintervals. More could be included in a similar manner.

#include <imsl.h>

class IntFcnSing
{
public:
int max subinter;
IntFcnSing () ;
float integrate (IntFcnSingFunction *F, float a, float b);
}i

static float local function(float x, void *data)

{
IntFcnSingFunction *F = (IntFcnSingFunction*)data;
return F->f (x);

IntFcnSing: :IntFcnSing ()
{

max subinter = 500;

float IntFcnSing::integrate (IntFcnSingFunction *F, float a, float b)

{
float result;

result = imsl f int fcn sing(NULL, a, b,

EE R{nggmq\{q C++ Usage Introduction

IMSL FCN W DATA, local function, F,
IMSL MAX SUBINTER, max subinter,
0);

if (imsl error type() >= 3)

{

throw imsl error message();

}

return result;

}
To use this IntFcnSing the user defined function must be defined as the method £ in a class that extends

IntFcnSingFunction. The following class, MyClass, defines the function f(x) =e"—ax,whereqgisa
parameter.

class MyClass : public IntFcnSingFunction
{
public:
MyClass () ;
float f (double x);
private:
float my parameter;

b

MyClass::MyClass ()
{

my parameter = 5.0;

float MyClass::f(float x)
{

return exp(x) - my parameter*x;

}

The following is an example of the use of these classes. Since the C++ throws an exception on fatal or terminal
IMSL errors, printing and stopping on these errors is turned off by a call to ims1 error options. Also, since
the user defined function is thread-safe, a call is made to ims1 omp_ options to declare this. With this setting,
the quadrature code will use OpenMP to evaluate the function in parallel. Both of these calls need be made once
per run.

The second part of this example sets the maximum number of subintevals to 5, an unrealistically small number,
to show the error handling.

int main ()
{
imsl error options(

IMSL SET PRINT, IMSL FATAL, O,
IMSL SET PRINT, IMSL TERMINAL, O,
IMSL SET STOP, IMSL FATAL, O,
IMSL SET STOP, IMSL TERMINAL, O,
0) 7

EE Rogygmq\{q C++ Usage Introduction

imsl omp options (IMSL_SET FUNCTIONS THREAD SAFE, 1, 0);

IntFcnSing *intFcnSing = new IntFcnSing();
MyClass *myClass = new MyClass () ;
float x = intFcnSing->integrate (myClass, -1.0, 1.0);
printf ("Solution in [-1,+1]: %g\n", x);
try {
intFcnSing->max subinter = 5;
X = intFcnSing -> integrate (myClass, -100.0, 1000.0);
printf ("Solution in [-100,1000]: %g\n", x);
} catch(char * exception) {
printf ("Exception raised: %s\n", exception);

Output

Integral over [-1,+1] = 2.3504
Exception raised: The maximum number of subintervals allowed "maxsub" = 5
has been reached. Increase "maxsub".

EE R{nggmq\{q C++ Usage Introduction 20

Matrix Storage Modes

In this section, the word matrix is used to refer to a mathematical object and the word array is used to refer to its
representation as a C data structure. In the following list of array types, the IMSL C Math Library functions require
input consisting of matrix dimension values and all values for the matrix entries. These values are stored in row-
major order in the arrays.

Each function processes the input array and typically returns a pointer to a “result.” For example, in solving linear
algebraic systems, the pointer is to the solution. For general, real eigenvalue problems, the pointer is to the eigen-
values. Normally, the input array values are not changed by the functions.

In the IMSL C Math Library, an array is a pointer to a contiguous block of data. They are not pointers to pointers to
the rows of the matrix. Typical declarations are:

float *a = {1, 2, 3, 4};
float b[2][2] = {1, 2, 3, 4};
float c[] = {1, 2, 3, 4};

General Mode

A general matrix is a square n x n matrix. The data type of a general array can be float, double, f complex, or
d_complex.

Rectangular Mode

A rectangular matrix is an m x n matrix. The data type of a rectangular array can be float, double, f complex, or
d_complex.

Symmetric Mode

A symmetric matrix is a square n x n matrix A, such that AT = A. (The matrix A" is the transpose of A.) The data type
of a symmetric array can be float or double.

Hermitian Mode

A Hermitian matrix is a square n x n matrix A, such that

The matrix Ais the complex conjugate of A, and

= R{nggmq\{e: Matrix Storage Modes Introduction 21

Al=4"

is the conjugate transpose of A. For Hermitian matrices A™ = A. The data type of a Hermitian array can be f.com-
plex or d_complex.

Sparse Coordinate Storage Format

Only the nonzero elements of a sparse matrix need to be communicated to a function. Sparse coordinate storage
format stores the value of each matrix entry along with that entry’s row and column index. The following four
non-homogeneous data structures are defined to support this concept:

typedef struct {
int row;
int col;
float val;

} Imsl f sparse elem;

typedef struct {
int row;
int col;
double wval;

} Imsl d sparse elem;

typedef struct {

int row;

int col;

f complex val;
} Imsl c sparse elem;

typedef struct {

int row;

int col;

d complex val;
} Imsl z sparse elem;

See the Complex Data Types and Functions in the Reference Material at the end of this manual for a discussion of
the complex data types f complex and d_complex. Note that the only difference in these structures involves
changes in underlying data types. A sparse matrix is passed to functions that accept sparse coordinate format by
forming an array of one of these data types. The number of elements in that array will be equal to the number of
nonzeros in the sparse matrix.

= R{nggmq\{q Matrix Storage Modes Introduction 22

As an example consider the 6 x 6 matrix:

(2 0 0 0 0 0
0 9 -3 -1 0 0
410 0 5 0 0 0
-2 0 0 -7 -1 0
-1 0 0 -5 1 -3
-1 2 0 0 0 6]

The matrix A has 15 nonzero elements, and the sparse coordinate representation would be
row 0 1 1 1 2 3 3 3 4 4 4 4 5 5 5
col 0 1 2 3 2 0 3 4 0 3 4 5 0 1 5
val 2 9 -3 -1 5 -2 -7 -1 -1 =5 T -3 -1 =2 6

row 5 4 3 0 5 1 2 1 4 3 1 4 3 5 4
col 0 0 0 0 1 1 2 2 3 3 3 4 4 5 5
val -1 -1 =2 2 =2 9 5 -3 -5 -7 -1 T 6 -3

There are different ways this data could be used to initialize an array of type, for example, Imsl_f sparse_elem.
Consider the following program fragment:

#include <imsl.h>
int main ()

{

Imsl f sparse elem a[] = {
{0, 0, 2.0},
{1, 1, 9.0},
{1, 2, -3.0},
{1, 3, -1.0},
{2, 2, 5.0},
{3, 0, -2.0},
{31 3/ _7-0}/
{31 4/ _1-0}1
{4, 0, -1.0},
{4, 3, -5.0},
{4, 4, 1.0},
{41 5/ _3-0}/
{5/ OI _1-0}/
{51 1/ _2-0}1
{5, 5, 6.0} };

Imsl f sparse elem b[1l5];

b[0].row = b[0].col = 0; b[0].val = 2.0;
b[l].row = b[l].col = 1; bll].val = 9.0;
b[2].row = 1; b[2].col = 2; b[2].val = -3.0;
b[3].row = 1; b[3].col = 3; b[3].val = -1.0;

= R{ng?mq\{q Matrix Storage Modes Introduction 23

}

b[4] . .row =
b[5].row =
b[6].row =
b[7].row =
b[8].row =
b[9].row =
b[10].row
bl[ll].row
bl[l1l2].row
b[1l3].row
b[1l4].row

b[4].co ;

3; b[5].col = 0;
b[6].col = 3;

3; b[7].col = 4;
4; b[8].col = 0;
4; b[9].col = 3;
= b[10].col = 4;
= 4; b[ll].col = 5;
= 5; b[l2].col = 0;
= 5; b[13] = 1;
= b[l4].col = 5;

b[{4].val = 5.0;

b[5].val = -2.0;
b[6].val = -7.0;
b[7].val = -1;

b[(8].val = -1.0;
b[9].val = -5.0;
b[10].val = 1.0;
b[1l1l].val = -3.0;
b[l2].val = -1.0;
b[l3].val = -2.0;
b[1l4].val = 6.0;

Both a and b represent the sparse matrix A, and the functions in this module would produce identical results
regardless of which identifier was sent through the argument list.

A sparse symmetric or Hermitian matrix is a special case, since it is only necessary to store the diagonal and
either the upper or lower triangle. As an example, consider the 5 x 5 linear system:

The Hermitian and symmetric positive definite system solvers in this library expect the diagonal and lower triangle

(40) (1,-1) 0
(1,1) (4,0) (1,-1)

0 (1,1) (40) (1,-1)

0 0 (1,1)

0
0

(4,0) _

to be specified. The sparse coordinate form for the lower triangle is given by

row 0
col 0
val 4,0)

As before, an equivalent form would be

row 0
col 0
val (4,0)

1 1 2
0 1 1
(1m (4,0 (1m

The following program fragment will initialize both a and b to H

#include <imsl.h>
int main ()

{

Imsl c sparse

{0, 0, {4.
{1, 1, {4.
{2, {4
{3, {4.
{1, {1.

o w N
~ 0~

~

0,
.0,
0,
Ol

elem a[] = {
0, .0},
.0},
.0} 1},
.0}},
.0} 1},

R O O o o

1 2 3
0 1 2
(1,1 (1,m (1m
2 3 3
2 2 3

(4,0) (1,1) (4,0

=RogueWave

Matrix Storage Modes

Introduction

24

{2,
{3,
}

1,
2,

{1.0, 1.0}},
{1.0, 1.0}}

Imsl ¢ sparse elem b[7];

.TOW
.val
.Trow
.val
.TOow
.val
.TOwW
.val
.Trow
.val
.TOow
.val
.TOW
.val

OO0 00000000000 T
OOYUT U D WWNNRE PP OO

}

b[0].col = 0;

imsl cf convert
1; b[l].col = 0;
imsl cf convert
b[2].col = 1;

imsl cf convert
2; b[3].col = 1;
imsl cf convert
bl[4].col = 2;

imsl cf convert
3; b[5].col = 2;
imsl cf convert
b[6].col = 3;

imsl cf convert

(4.

(1.

(4.

(1.

(4.

(1.

(4.

0,

There are some important points to note here. H is not symmetric, but rather Hermitian. The functions that

accept Hermitian data understand this and operate assuming that

hl]:Zl]

The IMSL C Math Library cannot take advantage of the symmetry in matrices that are not positive definite. The
implication here is that a symmetric matrix that happens to be indefinite cannot be stored in this compact sym-
metric form. Rather, both upper and lower triangles must be specified and the sparse general solver called.

Band Storage Format

A band matrix is an M x N matrix with all of its nonzero elements “close” to the main diagonal. Specifically, values

Aj=0ifi-j>nlcaorj-i>nuca. Theinteger m=nlca + nuca + 1 s the total band width. The diagonals,

other than the main diagonal, are called codiagonals. While any M x N matrix is a band matrix, band storage for-
mat is only useful when the number of nonzero codiagonals is much less than N.

In band storage format, the n1ca lower codiagonals and the nuca upper codiagonals are stored in the rows of

an array of size M x N. The elements are stored in the same column of the array as they are in the matrix. The val-

ues Aj inside the band width are stored in the linear array in positions [(i = j+ nuca + 1) * n +j]. This results in

a row-major, one-dimensional mapping from the two-dimensional notion of the matrix.

For example, consider the 5 x 5 matrix A with 1 lower and 2 upper codiagonals:

=RogueWave

Matrix Storage Modes Introduction 25

0 0 0 Ags A4y

In band storage format, the data would be arranged as

0 0 Aoo A3 A4
0 Ao A2 Ay 434
Aoo A1 Az n Az 3 Aaa
Ao Ay A3 0 As5 0

This data would then be stored contiguously, row-major order, in an array of length 20.

As an example, consider the following tridiagonal matrix:

10 1 0 0 O
5202 0 O
A=[(0 6 30 3 O
0 0 7 40 4
0 0 0 8 50

The following declaration will store this matrix in band storage format:

float al[] = {
0.0, 1.0, 2.
10.0, 20.0,
5.0, 6.0, 7.
ti

As in the sparse coordinate representation, there is a space saving symmetric version of band storage. As an
example, look at the following 5 x 5 symmetric problem:

[Ao, 0 Ao, 1 Ao, 0 0
Ao,y Ay Ay 43 0
A= Ao,z A1,2 Az,z A2,3 A2,4
0 Ay 3 Ay 3 A3 3 434
0 0 Ay 4 A3 4 A¢4_

In band symmetric storage format, the data would be arranged as

= Rogygmq\{q Matrix Storage Modes Introduction 26

The following Hermitian example illustrates the procedure:

[(8,0) (1,1) (1,1) 0 0
(1,-1) (8,0) (1,1) (1,1) 0
H=|(1,-1) (1,-1) (80) (1,1) (1,1)
0 (1, -1) (1,-1) (8,0) (1,1)
0 0 (1,-1) (1,-1) (8,0)

The following program fragments would store H in h, using band symmetric storage format.

f complex h[] = {
{0.0, 0.0}, {0.0, 0.0}, {1.0, 1.0}, {1.0, 1.0}, {1.0, 1.0},
{0.0, 0.0}, {1.0, 1.0}, {1.0, 1.0}, {1.0, 1.0}, {1.0, 1.0},
{8.0, 0.0}, {8.0, 0.0}, {8.0, 0.0}, {8.0, 0.0}, {8.0, 0.0}};

or equivalently

f complex h[15];

h[0] = h[1] = h[5] = imsl cf convert (0.0,

h[2] = h[3] = h[4] h[{6] = h[7] = h[8] =
imsl cf convert (1.0, 1.0);

h[10] = h[1l1l] = h[12] = h[13] =
imsl cf convert (8.0, 0.0);

0.0);
[9] =

h[9

h[1l4] =

Choosing Between Banded and Coordinate Forms

It is clear that any matrix can be stored in either sparse coordinate or band format. The choice depends on the
sparsity pattern of the matrix. A matrix with all nonzero data stored in bands close to the main diagonal would
probably be a good candidate for band format. If nonzero information is scattered more or less uniformly
through the matrix, sparse coordinate format is the best choice. As extreme examples, consider the following two
cases: (1) an n x n matrix with all elements on the main diagonal and the (0, n - 1) and (n - 1, O) entries nonzero.
The sparse coordinate vector would be n + 2 units long. An array of length n(2n - 1) would be required to store
the band representation, nearly twice as much storage as a dense solver might require. (2) a tridiagonal matrix
with all diagonal, superdiagonal and subdiagonal entries nonzero. In band format, an array of length 3n is
needed. In sparse coordinate, format a vector of length 3n - 2 is required. But the problem is that, for example,
for float precision, each of those 3n - 2 units in coordinate format requires three times as much storage as any of
the 3n units needed for band representation. This is due to carrying the row and column indices in coordinate
form. Band storage evades this requirement by being essentially an ordered list, and defining location in the orig-
inal matrix by position in the list.

= R{nggmq\{q Matrix Storage Modes Introduction

Compressed Sparse Column (CSC) Format

’

Functions that accept data in coordinate format can also accept data stored in the format described in the Users
Guide for the Harwell-Boeing Sparse Matrix Collection (via optional argument IMSL CSC_FORMAT). The
scheme is column oriented, with each column held as a sparse vector, represented by a list of the row indices of
the entries in an integer array ("rowind” below) and a list of the corresponding values in a separate float (double,
f.complex, d_complex) array (“values” below). Data for each column are stored consecutively and the columns
are stored in order. A third array (“colptz” below) indicates the location in array “values” in which to place the
first nonzero value of each succeeding column of the original sparse matrix. So colptr [i] contains the index

of the first free location in array “values” in which to place the values from the 1™ column of the original sparse
matrix. In other words, values [colptr [1]] holds the first nonzero value of the i-th column of the original
sparse matrix. Only entries in the lower triangle and diagonal are stored for symmetric and Hermitian matrices.
All arrays are based at zero, which is in contrast to the Harwell-Boeing test suite’s one-based arrays.

As in the Harwell-Boeing user guide (link above), the storage scheme is illustrated with the following example: The
5 x5 matrix

1 -3 0 -1 0
0 0 -2 0 3
2 0 0 0 O
0 4 0 —40
50 -5 0 6

would be stored in the arrays colptr (location of first entry), rowind (row indices), and values (nonzero
entries) as follows:

Subscripts 0 I 2 3 4 5 6 7 8 9 10
Colptr 0 3 5 7 9 11

Rowind 0 2 4 0 3 1 4 0 3 1 4
Values 1 2 5 -3 4 -2 -5 -1 -4 3

The following program fragment shows the relation between CSC storage format and coordinate representation:

void main ()
{
int 1, 7J,

k, n=5, nz, start, stop;
int colptr[] =

[

[

] {0, 3, 5, 7, 9, 11}%};
int rowindf[] = {0, 2, 4, 0, 3, 1, 4, 0, 3, 1, 4};
int values][] {1.0, 2.0, 5.0, -3.0, 4.0, -2.0,
-5.0, -1.0, -4.0, 3.0, 6.0};

Imsl d sparse elem alll];
k = 0;
for (i=0; i<n; i++) {

start = colptr[i];

stop = colptr[i+l];

for (j=start; j<stop; j++) {

alk]..row = rowind([]j];

= R{nggmq\{q Matrix Storage Modes Introduction

28

http://math.nist.gov/MatrixMarket/collections/hb.html
http://math.nist.gov/MatrixMarket/collections/hb.html

alk].col = 1i;
alk++].val = values|[]j];

= Rogygmq\{e; Matrix Storage Modes Introduction 29

% Rogygmq\{q Matrix Storage Modes Introduction 30

chapter 1 LINne€ar Systems

I

Functions

Linear Equations with Full Matrices
Factor, Solve, and Inverse for General Matrices

Real MatriCes. . ..o o lin_sol_gen 36

Complex Matrices. lin_sol_gen (complex) 45
Factor, Solve, and Inverse for Positive Definite Matrices

Real matrices. o lin_sol_posdef 52

Complex matrices. lin_sol_posdef (complex) 58

Linear Equations with Band Matrices
Factor and Solve for Band Matrices

Real matrices. lin_sol_gen_band 64

Complexmatrices. lin_sol_gen_band (complex) 70
Factor and Solve for Positive Definite Matrices Symmetric

Realmatrices. lin_sol_posdef_band 76

Complexmatrices. ... lin_sol_posdef_band (complex) 81

Linear Equations with General Sparse Matrices
Factor and Solve for Sparse Matrices |

Realmatrices. lin_sol_gen_coordinate 87

Complexmatrices. i lin_sol_gen_coordinate (complex) 99
Factor and Solve for Sparse Matrices Il

Real MatriCes. ... superlu 108

Complex Matrices. superlu (complex) 123
OpenMP-based parallel Factor and Solve for Sparse Matrices

Real Matrices superlu_smp 138

Complex Matrices. i i superlu_smp (complex) 150
Factor and Solve for Positive Definite Matrices

Realmatrices. ... lin_sol_posdef_coordinate 163

= Rogyngq\(e: Chapter 1 Linear Systems 31

Complex matrices lin_sol_posdef_coordinate (complex) 172
OpenMP-based parallel Factor and Solve for Positive Definite Matrices

Real Matrices sparse_cholesky_smp 181

Complex Matrices sparse_cholesky_smp (complex) 191
Iterative Methods

Restarted generalized minimum residual
(GMRES) method lin_sol_gen_min_residual 207

Conjugate gradient method lin_sol_def cg 207

Linear Least-squares with Full Matrices
Least-squares and QR decomposition

Least-squares solve, QR decomposition................... lin_least_squares_gen 214

Non-negative least squares solution..................... nonneg_least_squares 223

Linear CoNStraints lin_Isq_lin_constraints 230
Non-Negative Matrix Factorization (NNMF)

Non-negative matrix factorization solution nonneg_matrix_factorization 235
Singular Value Decompositions (SVD) and Generalized Inverse

Real matrixX lin_svd_gen 240

CompIex MatriXo lin_svd_gen (complex) 247
Factor, Solve, and Generalized Inverse for Positive Semidefinite Matrices

Realmatrices lin_sol_nonnegdef 254

EE R{nggmq\{q Chapter 1 Linear Systems 32

Usage Notes

Solving Systems of Linear Equations

A square system of linear equations has the form Ax = b, where A is a user-specified n X n matrix, b is a given
right-hand side n vector, and x is the solution n vector. Each entry of A and b must be specified by the user. The
entire vector x is returned as output.

When A is invertible, a unique solution to Ax = b exists. The most commonly used direct method for solving Ax = b
factors the matrix A into a product of triangular matrices and solves the resulting triangular systems of linear
equations. Functions that use direct methods for solving systems of linear equations all compute the solution to
Ax = b. Thus, if function ims1 £ superlu ora function with the prefix “ims1 f 1in sol”is called with the
required arguments, a pointer to x is returned by default. Additional tasks, such as only factoring the matrix A into
a product of triangular matrices, can be done using keywords.

Matrix Factorizations

In some applications, it is desirable to just factor the n x n matrix A into a product of two triangular matrices. This
can be done by calling the appropriate function for solving the system of linear equations Ax = b. Suppose that in
addition to the solution x of a linear system of equations Ax = b, the LU factorization of A is desired. Use the key-
word IMSL FACTOR inthe function ims1 £ 1in sol gen to obtain access to the factorization. If only the
factorization is desired, use the keywords IMSL FACTOR_ ONLY and IMSL FACTOR. For function
imsl f superlu, use keyword IMSL RETURN SPARSE LU FACTOR in order to get the LU factorization. If
only the factorization is desired, then keywords IMSL RETURN SPARSE LU FACTOR and

IMSL FACTOR SOLVE with value 1 are required.

Besides the basic matrix factorizations, such as LU and LL', additional matrix factorizations also are provided. For
a real matrix A, its QR factorization can be computed by the function ims1 f lin least squares gen.Func-
tions for computing the singular value decomposition (SVD) of a matrix are discussed in a later section.

Matrix Inversions

The inverse of an n x n nonsingular matrix can be obtained by using the keyword IMSL INVERSE in functions
for solving systems of linear equations. The inverse of a matrix need not be computed if the purpose is to solve
one or more systems of linear equations. Even with multiple right-hand sides, solving a system of linear equations
by computing the inverse and performing matrix multiplication is usually more expensive than the method dis-
cussed in the next section.

= R{nggmq\{q Usage Notes Chapter 1 Linear Systems

33

Multiple Right-Hand Sides

Consider the case where a system of linear equations has more than one right-hand side vector. It is most eco-
nomical to find the solution vectors by first factoring the coefficient matrix A into products of triangular matrices.
Then, the resulting triangular systems of linear equations are solved for each right-hand side. When A is a real
general matrix, access to the LU factorization of A is computed by using the keywords IMSL FACTOR and
IMSL FACTOR_ONLY infunction imsl f lin sol gen. The solution x for the k-th right-hand side vector by
is then found by two triangular solves, Ly, = by and Uxy = yi. The keyword IMSL SOLVE_ ONLY in the function
imsl f 1lin sol genis used to solve each right-hand side. These arguments are found in other functions
for solving systems of linear equations. For function ims1 f superlu, use the keywords

IMSL RETURN SPARSE LU FACTORand IMSL FACTOR SOLVE with value 1 to get the LU factorization,
and then keyword IMSL FACTOR SOLVE with value 2 to get the solution for different right-hand sides.

Least-Squares Solutions and qr Factorizations

Least-squares solutions are usually computed for an over-determined system of linear equations Apxn X = b,

where m > n. A least-squares solution x minimizes the Euclidean length of the residual vector r = Ax — b. The
function imsl £ lin least squares_gen COMputes a unique least-squares solution for x when A has full
column rank. If A is rank-deficient, then the base solution for some variables is computed. These variables consist
of the resulting columns after the interchanges. The QR decomposition, with column interchanges or pivoting, is
computed such that AP = QR. Here, Q is orthogonal, R is upper-trapezoidal with its diagonal elements nonincreas-
ing in magnitude, and P is the permutation matrix determined by the pivoting. The base solution xg is obtained by

solving R(P"x = QTb for the base variables. For details, see the “Description” section of function
imsl f 1lin least squares gen. The QR factorization of a matrix A such that AP = QR with P specified by
the user can be computed using keywords.

Least-squares problems with linear constraints and one right-hand side can be solved. These equations are

Amxn X = b,

subject to constraints and simple bounds
bl << bu
X< X< Xy

Here A is the coefficient matrix of the least-squares equations, b is the right-hand side, and C is the coefficient
matrix of the constraints. The vectors b;, b, X, and x, are the lower and upper bounds on the constraints and the

variables. This general problem is solved with ims1 £ l1in 1lsg lin constraints.

For the special case of where there are only non-negative constraints, x = 0, solve the problem with

imsl f nonneg least squares.

= R{nggmq\{q Usage Notes Chapter 1 Linear Systems

34

Non-Negative Matrix Factorization

If the matrix Ay, x n = 0, factor it as a product of two matrices, Ap x n = Frn x k Gk x n- The matrices Fand G are both

non-negative and k < min(m, n). The factors are computed so that the residual matrix E=A - F G has a sum of
squares norm that is minimized. There are normalizations of F, x| and Gy x , described in the documentation of

imsl f nonneg matrix factorization.

Singular Value Decompositions and Generalized Inverses

The SVD of an m x n matrix A is a matrix decomposition A = UsVvT. with g = min(m, n), the factors Uqu and anq
are orthogonal matrices, and Sq«q is @ nonnegative diagonal matrix with nonincreasing diagonal terms. The func-

tion imsl f lin svd gen computes the singular values of A by default. Using keywords, part or all of the U
and V matrices, an estimate of the rank of A, and the generalized inverse of A, also can be obtained.

lll-Conditioning and Singularity

An m x n matrix A is mathematically singular if there is an x = 0 such that Ax = 0. In this case, the system of linear
equations Ax = b does not have a unique solution. On the other hand, a matrix A is numerically singular if it is
“close” to a mathematically singular matrix. Such problems are called ill-conditioned. If the numerical results with
an ill-conditioned problem are unacceptable, users can either use more accuracy if it is available (for type float
accuracy switch to double) or they can obtain an approximate solution to the system. One form of approximation
can be obtained using the SVD of A: If g = min(m, n) and

The scalars t;; are defined below.
_ Xs,-,,-l if 5;;,> 10l >0
" [0 otherwise

The user specifies the value of tol. This value determines how “close” the given matrix is to a singular matrix. Fur-
ther restrictions may apply to the number of terms in the sum, k < g. For example, there may be a value of k < q
such that the scalars I(bTui)I, i > k are smaller than the average uncertainty in the right-hand side b. This means

that these scalars can be replaced by zero; and hence, b is replaced by a vector that is within the stated uncer-
tainty of the problem.

= R{nggmq\{e: Usage Notes Chapter 1 Linear Systems

35

in_sol_gen

more. ..

Solves a real general system of linear equations Ax = b. Using optional arguments, any of several related compu-
tations can be performed. These extra tasks include computing the LU factorization of A using partial pivoting,

computing the inverse matrix A™!, solving Ax = b, or computing the solution of Ax = b given the LU factorization of
A

Synopsis
#include <imsl.h>
float *imsl f 1in sol gen(intn,floatal], floatb[], .., 0)

The type double functionis ims1 _d lin sol gen.

Required Arguments

intn (Input)
Number of rows and columns in the matrix.

floata[] (Input)
Array of size n X n containing the matrix.

floatb[] (Input)
Array of size n containing the right-hand side.

Return Value

A pointer to the solution x of the linear system Ax = b. To release this space, use ims1 free. If no solution was

computed, then NULL is returned.

Synopsis with Optional Arguments
#include <ims1l.h>
float *ims1 f lin sol gen(intn, floata[],floatb[],
IMSL A COL _DIM, inta _col dim,

IMSL TRANSPOSE,

= R{ng?mq\{q lin_sol_gen Chapter 1 Linear Systems 36

IMSL RETURN USER, float x[1,

IMSL FACTOR, int **p pvt,float **p factor,
IMSL_FACTOR USER,intpvt[],float factor[],
IMSL_FAC_COL DIM, int fac_col dim,
IMSL_INVERSE, float **p inva,

IMSL INVERSE USER, float invall,
IMSL_INV_COL DIM,intinva col dim,
IMSL CONDITION, float *cond,

IMSL FACTOR ONLY,

IMSL SOLVE ONLY,

IMSL INVERSE ONLY,

0)

Optional Arguments

IMSL A COL DIM, inta col dim (Input)
The column dimension of the array a.
Defaultta_col dim=n

IMSL TRANSPOSE

Solve ATx = b.
Default: Solve Ax = b

IMSL RETURN USER, float x[] (Output)
A user-allocated array of length n containing the solution x.

IMSL FACTOR,int **p pvt, float **p factor (Output)

int **p_pvt (Output)
The address of a pointer to an array of length n containing the pivot sequence for the factoriza-
tion. On return, the necessary space is allocated by ims1 f 1in sol gen. Typically,
int *p_pvt is declared, and &p_pvt isused as an argument.

float **p factor (Output)
The address of a pointer to an array of size n x n containing the LU factorization of A with column
pivoting. On return, the necessary space is allocated by ims1 f 1in sol gen. The lower-tri-
angular part of this array contains information necessary to construct L, and the upper-triangular
part contains U (see Example 2). Typically, float *p factor is declared, and &p factoris
used as an argument.

= R{ng?mq\{q lin_sol_gen Chapter 1 Linear Systems 37

IMSL FACTOR USER,intpvt[],float factor[] (Input/Output)

intpvt[] (Input/Output)
A user-allocated array of size n containing the pivot sequence for the factorization.

float factor [] (Input/Output)
A user-allocated array of size n x n containing the LU factorization of A. The strictly lower-triangu-
lar part of this array contains information necessary to construct L, and the upper-triangular part
contains U (see Example 2). If Ais not needed, factor and a can share the same storage.

These parameters are input if IMSL SOLVE is specified. They are output otherwise.

IMSL FAC COL DIM, int fac_col dim (Input)
The column dimension of the array containing the LU factorization of A.
Default: fac_col dim=n

IMSL INVERSE, float **p inva (Output)
The address of a pointer to an array of size n x n containing the inverse of the matrix A. On return,
the necessary space is allocated by ims1 f 1in sol gen. Typically, float *p inva is declared,
and &p_inva is used as an argument.

IMSL INVERSE USER, float inva[] (Output)
A user-allocated array of size n x n containing the inverse of A.

IMSL INV _COL DIM intinva col dim (Input)
The column dimension of the array containing the inverse of A.
Default: inva_col dim=n

IMSL CONDITION, float *cond (Output)
A pointer to a scalar containing an estimate of the Ly norm condition number of the matrix A. This

option cannot be used with the option IMSL SOLVE_ ONLY.

IMSL_FACTOR_ONLY
Compute the LU factorization of A with partial pivoting. If IMSL FACTOR_ONLY is used, either
IMSL FACTORor IMSL FACTOR USERIsrequired. The argument b is then ignored, and the
returned value of imsl f 1in sol genis NULL.

IMSL_SOLVE_ONLY
Solve Ax = b given the LU factorization previously computed by ims1 £ 1in sol gen.Bydefault,
the solution to Ax = b is pointed to by ims1 f 1in sol gen.If IMSL SOLVE_ ONLY is used,
argument IMSL FACTOR_USER is required, and the argument a is ignored.

IMSL_INVERSE ONLY
Compute the inverse of the matrix A. If IMSL INVERSE ONLY is used, either IMSL INVERSE or
IMSL INVERSE USERIs required. The argument b is then ignored, and the returned value of
imsl f 1lin sol genis NULL.

= Rogygmq\{q lin_sol_gen Chapter 1 Linear Systems

38

Description

Thefunctionimsl f 1lin sol gen solvesa system of linear algebraic equations with a real coefficient matrix

A. It first computes the LU factorization of A with partial pivoting such that L'A = U. Let F be the matrix
p_factor returned by optional argument IMSL_FACTOR. The triangular matrix U is stored in the upper trian-

gle of F. The strict lower triangle of F contains the information needed to reconstruct ! using

-1
L :LI’I—IPI’!—I LIPI

The factors P;jand L; are defined by partial pivoting. P;is the identity matrix with rows iand p_pvt [1-1] inter-
changed. L; is the identity matrix with F;, for j=i+1, .., n, inserted below the diagonal in column /.

The factorization efficiency is based on a technique of “loop unrolling and jamming” by Dr. Leonard J. Harding of
the University of Michigan, Ann Arbor, Michigan. The solution of the linear system is then found by solving two

simpler systems, y = L"'b and x = U"'y. When the solution to the linear system or the inverse of the matrix is
sought, an estimate of the L, condition number of A is computed using the same algorithm as in Dongarra et al.

(1979). If the estimated condition number is greater than 1/e (where € is the machine precision), a warning mes-
sage is issued. This indicates that very small changes in A may produce large changes in the solution x. The
functionimsl f 1in sol gen failsif U, the upper triangular part of the factorization, has a zero diagonal
element.

Examples

Example 1

This example solves a system of three linear equations. This is the simplest use of the function. The equations fol-
low below:

X1+3X2+3X3:1
X1+3X2+4X3=4:
X1+4X2+3X3=—1

#include <imsl.h>

int main ()

{

int n = 3;
float *x;
float all = {1.0, 3.0, 3.0,

1.0, 3.0, 4.0,

1.0, 4.0, 3.0};
float b[] = {1.0, 4.0, -1.0};

/* Solve Ax = b for x */

x = imsl f 1lin sol gen (n, a, b, 0);

/* Print x */
imsl f write matrix ("Solution, x, of Ax = Db", 1, 3, x, 0);

= R{ng?mq\{q lin_sol_gen Chapter 1 Linear Systems 39

}
Output

Solution, x, of AxXx = Db

1 2 3
-2 -2 3
Example 2

This example solves the transpose problem A'x = b and returns the LU factorization of A with partial pivoting. The

same data as the initial example is used, except the solution x = Ab is returned in an array allocated in the main
program. The L matrix is returned in implicit form.

#include <imsl.h>

int main ()

{

int n =3, pvt[3];

float factor[9];

float x[31;

float al] = {1.0, 3.0, 3.0,
1.0, 3.0, 4.0,
1.0, 4.0, 3.0};

float b[] = {1.0, 4.0, -1.0};

/* Solve trans(A)*x = b for x */
imsl f lin sol gen (n, a, b,
IMSL TRANSPOSE,
IMSL RETURN USER, x,
IMSL FACTOR USER, pvt, factor,
0);

/* Print x */
imsl f write matrix ("Solution, x, of trans(A)x = b", 1, n, x, 0);

/* Print factors and pivot sequence */
imsl f write matrix ("LU factors of A", n, n, factor, 0);

imsl i write matrix ("Pivot sequence", 1, n, pvt, 0);
}
Output
Solution, x, of trans(A)x = Db

1 2 3

4 -4 1

LU factors of A
1 2 3

1 1 3 3

= Rogypmq\{q lin_sol_gen Chapter 1 Linear Systems 40

2 -1 1 0
3 -1 0 1

Pivot sequence
1 2 3
1 3 3
Reconstruction of "' and U from factor:
_1 _
L =L,P,LP,

P;is the identity matrix with row i and row pvt[i-1] interchanged.

pvt=13,3
row 1 and row pvt[0], or row 1, are
1 0] interchanged, which is still the identity
P.=l01 0 matrix.
1
0 1
row 2 and row pvt [1], or row 3, are
1 00 interchanged.
P,=10 0 1
010

1 3 3
factor=|—-1 1 0
-1 0 1
second and third elements of
1 0 O column 1 of factor are
_ | inserted below the diagonal in
Ll 10 column 1.
-1 0 1
third element of column 2 of
1 0 O factor is inserted below the
L2 =10 1 diagonal in column 2.
0 01
| 1 00
-1 10

= R{nggmq\{e: lin_sol_gen Chapter 1 Linear Systems 41

U is the upper triangle of factor:

Example 3

This example computes the inverse of the 3 x 3 matrix A of the initial example and solves the same linear system.

The matrix product C = AA is computed and printed. The function ims1 f mat mul rect is used to com-
pute C. The approximate result C =/ is obtained.

#include <imsl.h>

float al]l] = {1.0, 3.0, 3.0,
1.0, 3.0, 4.0,
1.0, 4.0, 3.0};
float b[{] = {1.0, 4.0, -1.0};
int main ()
{
int n = 3;
float *xX;
float *p inva;
float *C;

/* Solve Ax = b */
x = imsl f lin sol gen (n, a, b,
IMSL INVERSE, &p_ inva,
0);

/* Print solution */
imsl f write matrix ("Solution, x, of Ax = Db", 1, n, x, 0);

/* Print input and inverse matrices */
imsl f write matrix ("Input A", n, n, a, 0);
imsl f write matrix ("Inverse of A", n, n, p inva, 0);
/* Check result and print */
C = imsl f mat mul rect ("A*B",
IMSL A MATRIX, n, n, p inva,
IMSL B MATRIX, n, n, a,
0) 7
imsl f write matrix ("Product matrix, inv(A)*A",n,n,C,0);

}
Output

Solution, x, of AXx =D
1 2 3

= R{nggmq\{q lin_sol_gen Chapter 1 Linear Systems

42

Input A

1 2 3
1 1 3 3
2 1 3 4
3 1 4 3

Inverse of A

1 2 3
1 7 -3 -3
2 -1 0 1
3 -1 1 0

Product matrix, inv(A)*A

1 2 3
1 1 0 0
2 0 1 0
3 0 0 1
Example 4

This example computes the solution of two systems. Only the right-hand sides differ. The matrix and first right-

hand side are given in the initial example. The second right-hand side is the vector ¢ =[0.5, 0.3, 0.4]". The factor-
ization information is computed with the first solution and is used to compute the second solution. The
factorization work done in the first step is avoided in computing the second solution.

#include <imsl.h>

int main ()

{

int n =3, pvt[3];

float factor[9];

float *X,*y;

float all = {1.0, 3.0, 3.0,
1.0, 3.0, 4.0,
1.0, 4.0, 3.0};

float b[] = {1.0, 4.0, -1.0};

float c[] = {0.5, 0.3, 0.4};

/* Solve A*x = b for x */
x = imsl f lin sol gen (n, a, b,
IMSL FACTOR USER, pvt, factor,
0) 7

/* Print x */
imsl f write matrix ("Solution, x, of Ax = Db", 1, n, x, 0);

= R{nggmq\{e: lin_sol_gen Chapter 1 Linear Systems

/* Solve for A*y = c for y */
y = imsl f lin sol gen (n, a, c,
IMSL_SOLVE_ ONLY,
IMSL FACTOR USER, pvt, factor,
0);
imsl f write matrix ("Solution, y, of Ay =c¢", 1, n, y, 0);

}

Output
Solution, x, of AXx =D
1 2 3
-2 -2 3

Solution, y, of Ay = c
1 2 3
1.4 -0.1 -0.2

Warning Errors

IMSL ILL CONDITIONED The input matrix is too ill-conditioned. An estimate of
the reciprocal of its L condition number is
“rcond” = #. The solution might not be accurate.

Fatal Errors

IMSL SINGULAR MATRIX The input matrix is singular.

= R{nggmg\(e: lin_sol_gen Chapter 1 Linear Systems 44

in_sol_gen (complex)

more. ..

Solves a complex general system of linear equations Ax = b. Using optional arguments, any of several related
computations can be performed. These extra tasks include computing the LU factorization of A using partial piv-

oting, computing the inverse matrix A”!, solving A™x = b, or computing the solution of Ax = b given the LU
factorization of A.

Synopsis
#include <ims1.h>
fcomplex *imsl c 1in sol gen(intn,fcomplexal],fcomplexb[],..,0)

The type d_complex functionis imsl z 1lin sol gen.

Required Arguments

int n (Input)
Number of rows and columns in the matrix.

f.complex al] (Input)
Array of size n x n containing the matrix.

f.complexb 1 (Input)
Array of length n containing the right-hand side.

Return Value

A pointer to the solution x of the linear system Ax = b. To release this space, use ims1 free. If no solution was
computed, then NULL is returned.

Synopsis with Optional Arguments
#include <ims1.h>
f.complex *ims1 c lin sol gen (intn, fcomplexa(],fcomplexbl],
IMSL A COL DIM,inta col dim,

IMSL TRANSPOSE,

= R{ng?mq\{q lin_sol_gen (complex) Chapter 1 Linear Systems 45

IMSL RETURN USER, f complex x[1],

IMSL FACTOR, int **p pvt, fcomplex **p factor,
IMSL FACTOR USER,intpvt[],fcomplex factor([],
IMSL FAC COL DIV, int fac col dim,

IMSL INVERSE, f complex **p inva,

IMSL INVERSE USER,f complex inval[],

IMSL INV COL DIM, intinva col dim,

IMSL CONDITION, float *cond,

IMSL FACTOR ONLY,

IMSL SOLVE ONLY,

IMSL INVERSE ONLY,

0)

Optional Arguments

IMSL A COL DIM, inta col dim (Input)
The column dimension of the array a.
Defaultta_col dim=n

IMSL TRANSPOSE

Solve Aflx = b
Default: Solve Ax = b

IMSL RETURN USER, f.complex x[] (Output)
A user-allocated array of length n containing the solution x.

IMSL_FACTOR, int **p_pvt, f complex **p_factor (Output)

int **p pvt (Output)
The address of a pointer to an array of length n containing the pivot sequence for the factoriza-
tion. On return, the necessary space is allocated by ims1 ¢ 1in sol gen. Typically,
int *p_pvt is declared, and &p_pvt is used as an argument.

f.complex **p factor (Output)
The address of a pointer to an array of size n x n containing the LU factorization of A with column
pivoting. On return, the necessary space is allocated by ims1 ¢ 1in sol gen. The lower-tri-
angular part of this array contains information necessary to construct L, and the upper-triangular
part contains U. Typically, f complex *p_factor is declared, and &p_factor is used as an
argument.

EE R{nggmq\{q lin_sol_gen (complex) Chapter 1 Linear Systems

46

IMSL FACTOR USER, int pvt[], f complex factor[] (Input/Output)

intpvt[] (Input/Output)
A user-allocated array of size n containing the pivot sequence for the factorization.

f.complex factor [] (Input/Output)
A user-allocated array of size n x n containing the LU factorization of A. The lower-triangular part
of this array contains information necessary to construct L, and the upper-triangular part con-
tains U.

These parameters are input if IMSL SOLVE is specified. They are output otherwise. If A is not
needed, factor and a can share the same storage.
IMSL FAC COL DIM, intfac col dim (Input)
The column dimension of the array containing the LU factorization of A.
Default: fac_col dim=n

IMSL INVERSE, f complex **p inva (Output)
The address of a pointer to an array of size n x n containing the inverse of the matrix A. On return,
the necessary space is allocated by ims1 ¢ 1in sol gen. Typically, f.complex *p invas
declared, and &p_inva is used as an argument.

IMSL INVERSE USER,f complex inva[] (Output)
A user-allocated array of size n x n containing the inverse of A.

IMSL INV COL DIM, intinva col dim (Input)
The column dimension of the array containing the inverse of A.
Default: inva_col dim=n

IMSL CONDITION, float *cond (Output)
A pointer to a scalar containing an estimate of the Ly norm condition number of the matrix A. Do not

use this option with IMSL SOLVE_ONLY.

IMSL FACTOR ONLY
Compute the LU factorization of A with partial pivoting. If IMSL._ FACTOR_ONLY is used, either
IMSL FACTORoOr IMSL FACTOR USERis required. The argumentb is then ignored, and the
returned value of imsl ¢ 1lin sol genis NULL.

IMSL SOLVE_ ONLY
Solve Ax = b given the LU factorization previously computed by ims1 ¢ 1in sol gen. By default,
the solutionto Ax = b is pointed to by ims1 ¢ 1in sol gen.I|f IMSL SOLVE_ ONLY is used,
argument IMSL FACTOR_USER is required and argument a is ignored.

IMSL INVERSE ONLY
Compute the inverse of the matrix A. If IMSL INVERSE_ ONLY is used, either IMSL INVERSE or
IMSL INVERSE USERIsrequired. Argument b is then ignored, and the returned value of
imsl ¢ lin sol genis NULL.

= Rogygmq\{q lin_sol_gen (complex) Chapter 1 Linear Systems

47

Description

The function ims1 ¢ 1lin sol gen solves a system of linear algebraic equations with a complex coefficient

matrix A. It first computes the LU factorization of A with partial pivoting such that L'A = U. Let F be the matrix
p_factor returned by optional argument IMSL_FACTOR. The triangular matrix U is stored in the upper trian-
gle of F. The strict lower triangle of F contains the information needed to reconstruct

L™t using

-1
L = Ln,IPn,I LIPI

The factors P;jand L; are defined by partial pivoting. P;is the identity matrix with rows iand p_pvt [1-1] inter-
changed. L; is the identity matrix with Fj;, for j=i+1,..., n, inserted below the diagonal in column /.

The solution of the linear system is then found by solving two simpler systems, y = L"'b and x = U "'y. When the
solution to the linear system or the inverse of the matrix is computed, an estimate of the L, condition number of

Ais computed using the same algorithm as in Dongarra et al. (1979). If the estimated condition number is greater
than 1/& (where € is the machine precision), a warning message is issued. This indicates that very small changes in
A may produce large changes in the solution x. The function ims1 c¢ 1lin sol gen failsif U, the upper-trian-
gular part of the factorization, has a zero diagonal element.

Examples

Example 1
This example solves a system of three linear equations. The equations are:
A+ x;+Q2+3) x>+ (3 —3i)x3=3+5i
2+) x1+ (B +3i)xy + (7 — 5i) x3 =22 + 10i
(24) x;+(—4+4)xy+(5+3)x3=—-10+4i

#include <imsl.h>

f complex al] = {{1.0, 1.0}, {2.0, 3.0}, {3.0, =-3.0},
{2.0, 1.0}, {5.0, 3.0}, {7.0, -5.0},
{-2.0, 1.0}, {-4.0, 4.0}, {5.0, 3.0}};

f complex bl] {{3.0, 5.0}, {22.0, 10.0}, {-10.0, 4.01}};

int main ()

{

int n = 3;
f complex *x;

/* Solve Ax = b for x */
x = imsl c lin sol gen (n, a, b, 0);

EE R{nggmq\{q lin_sol_gen (complex) Chapter 1 Linear Systems

48

/* Print x */

imsl ¢ write matrix ("Solution, x, of Ax = Db", 1, n, x, 0);
}
Output
Solution, x, of Ax = Db
1 2 3
(1, -1) « 2, 4) | 3, -0)

Example 2

This example solves the conjugate transpose problem A™x = b and returns the LU factorization of A using partial
pivoting. This example differs from the first example in that the solution array is allocated in the main program.

#include <imsl.h>

f complex all {{1.0, 1.0}, {2.0, 3.0}, {3.0, =-3.0},
{2.0, 1.0}, {5.0, 3.0}, {7.0, -5.0},

{-2.0, 1.0}, {-4.0, 4.0}, {5.0, 3.0}};

f complex bl] {{3.0, 5.0}, {22.0, 10.0}, {-10.0, 4.0}};

int main ()

{

int n =3, pvt[3];
f complex factor([9];
f complex x[3];

/* Solve ctrans(A)*x = b for x */
imsl ¢ lin sol gen (n, a, b,
IMSL TRANSPOSE,
IMSL _RETURN USER, x,
IMSL FACTOR USER, pvt, factor,
0);
/* Print x */
imsl ¢ write matrix ("Solution, x, of ctrans(A)x = b", 1, n, x, 0);

/* Print factors and pivot sequence */
imsl ¢ write matrix ("LU factors of A", n, n, factor, 0);

imsl i write matrix ("Pivot sequence", 1, n, pvt, 0);
}
Output
Solution, x, of ctrans(A)x = Db
1 2 3
(-9.79, 11.23) (2.90, -3.13) (1.85, 2.47)

LU factors of A
1 2 3

= Rogypmq\{q lin_sol_gen (complex) Chapter 1 Linear Systems 49

1 -2.000, 1.000) ¢ -4.000, 4.000
2 | 0.600, 0.800) ¢ -1.200, 1.400
3 0.200, 0.600) ¢ -1.118, 0.529
Pivot sequence

1 2 3

3 3 3
Example 3

) 5.000, 3.000)
)« 2.200, 0.600)
) 4.824, 1.294)

This example computes the inverse of the 3 X 3 matrix A in the first example and also solves the linear system.

The product matrix € = A"'A is computed as a check. The approximate result is € = /.

#include <imsl.h>

{{1.0, 1.0}, {2.0, 3.0},
{2.0, 1.0}, {5.0, 3.0}
{-2.0, 1.0}, {-4.0, 4.

f complex al]

f complex bl] {{3.0, 5.0}, {22.0, 10.0}

int main ()

{

int n = 3;
f complex *X;
f complex *p_inva;
f complex *C;
/* Solve
x = imsl ¢ lin sol gen (n, a, b,
IMSL INVERSE, &p inva,
0);
/* Print
imsl ¢ write matrix ("Solution, x, of Ax
/* Print
imsl c write matrix ("Input A", n, n, a,
imsl ¢ write matrix ("Inverse of A", n,
/* Check
C = imsl ¢ mat mul rect ("A*B",

IMSL A MATRIX, n,n, p_inv
IMSL B MATRIX, n,n, a,
0) 7

imsl c write matrix ("Product, inv(A)*A"

}
Output

Solution, x, of Ax

{3.0, =-3.0},
, {7.0, -5.0},
0}, {5.0, 3.0}};

, {-10.0, 4.0}};

Ax = b for x */

solution */
=Db", 1, n, x, 0);

input and inverse matrices */
0) 7
n, p_inva, 0);

and print result */

ay

, n, n, C, 0);

=D

=RogueWave

lin_sol_gen (complex) Chapter 1 Linear Systems

50

(1, -1) 2, 4) | 3, -0)
Input A

1 2 3
1« 1, 1) | 2, 3) | 3, -3)
2 2, 1) | 5, 3) | 7, -5)
3 -2, 1) « -4, 4) | 5, 3)

Inverse of A

1 2 3
1 (1.330, 0.594) (-0.151, 0.028) (-0.604, 0.613)
2 | -0.632, -0.538) (0.160, 0.189) (0.142, -0.245)
3 -0.189, 0.160) (0.193, -0.052) (0.024, 0.042)

Product, inv (A)*A

1 2 3
1« 1, -0) -0, -0) -0, 0)
2 (OI O) (1/ O) (Or _O)
3 -0, -0) (-0, 0) (1, 0)
Warning Errors

IMSL ILL CONDITIONED The input matrix is too ill-conditioned. An estimate of

the reciprocal of the L1 condition number is
“rcond” = #. The solution might not be accurate.

Fatal Errors

IMSL SINGULAR MATRIX The input matrix is singular.

= R{ng?mq\{q lin_sol_gen (complex) Chapter 1 Linear Systems 51

in_sol_posdef

more. ..

Solves a real symmetric positive definite system of linear equations Ax = b. Using optional arguments, any of sev-
eral related computations can be performed. These extra tasks include computing the Cholesky factor, L, of A

such that A = LL", computing the inverse matrix A™!, or computing the solution of Ax = b given the Cholesky factor,

L.

Synopsis
#include <imsl.h>
float *imsl f 1in sol posdef (intn, floata[],floatb[], .., 0)

The type double functionis ims1 d 1lin sol posdef.

Required Arguments

int n (Input)
Number of rows and columns in the matrix.

floata[] (Input)
Array of size n x n containing the matrix.

floatb[] (Input)
Array of size n containing the right-hand side.

Return Value

A pointer to the solution x of the symmetric positive definite linear system Ax = b. To release this space, use

imsl free.If nosolution was computed, then NULL is returned.

Synopsis with Optional Arguments
#include <ims1l.h>
float *imsl f 1lin sol posdef (intn, floatal], floatb[],
IMSL A COL DIM inta col dim,

IMSL RETURN USER, floatx[],

EE Rogyngq\(e: lin_sol_posdef

Chapter 1 Linear Systems

52

IMSL_FACTOR, float **p factor,
IMSL_FACTOR USER, float factor[],
IMSL_FAC _COL_DIM int fac_col dim,
IMSL_INVERSE, float **p_inva,
IMSL_INVERSE_USER, float inval[],
IMSL_INV_COL_DIM, intinv_col dim,
IMSL_CONDITION, float *cond,
IMSL_FACTOR ONLY,
IMSL_SOLVE_ONLY,

IMSL_INVERSE_ ONLY,

0)

Optional Arguments

IMSL A COL DIM, inta col dim (Input)
The column dimension of the array a.
Defaultta_col dim=n

IMSL RETURN USER, float x[] (Output)
A user-allocated array of length n containing the solution x.

IMSL FACTOR, float **p factor (Output)

The address of a pointer to an array of size n x n containing the LL" factorization of A. On return, the
necessary space is allocated by ims1 f 1in sol posdef. The lower-triangular part of this

array contains L and the upper-triangular part contains L". Typically, float *p factor is declared,
and &p_ factor is used as an argument.

IMSL FACTOR_USER, float factor[] (Input/Output)
A user-allocated array of size n x n containing the LL' factorization of A. The lower-triangular part of

this array contains L, and the upper-triangular part contains L'. If A is not needed, a and factor can
share the same storage. If IMSL _SOLVE is specified, it is input; otherwise, it is output.

IMSL FAC COL DIM, intfac col dim (Input)
The column dimension of the array containing the LL' factorization of A.
Default: fac_col dim=n

= R{nggmq\{q lin_sol_posdef Chapter 1 Linear Systems

53

IMSL INVERSE, float **p inva (Output)
The address of a pointer to an array of size n x n containing the inverse of the matrix A. On return,
the necessary space is allocated by ims1 f 1in sol posdef. Typically, float *p invais
declared, and &p_inva is used as an argument.

IMSL INVERSE USER, float inva[] (Output)
A user-allocated array of size n x n containing the inverse of A.

IMSL INV COL DIM, intinva col dim (Input)
The column dimension of the array containing the inverse of A.

Default: inva_col dim=n

IMSL CONDITION, float *cond (Output)
A pointer to a scalar containing an estimate of the Ly norm condition number of the matrix A. Do not

use this option with IMSL SOLVE_ONLY.

IMSL FACTOR ONLY
Compute the Cholesky factorization LLT of A. If IMST, FACTOR _ONLY is used, either
IMSL FACTORor IMSL FACTOR USERIsrequired. The argument b is then ignored, and the
returned value of ims1 f 1lin sol posdef iSNULL.

IMSL_SOLVE_ONLY
Solve Ax = b given the LLT factorization previously computed by ims1_f 1lin sol posdef. By
default, the solution to Ax = b is pointed to by ims1 f 1in sol posdef.|f
IMSL SOLVE ONLY isused, argument IMSL FACTOR USERisrequired and the argument a is
ignored.

IMSL INVERSE ONLY
Compute the inverse of the matrix A. If IMSL._INVERSE ONLY is used, either IMSL INVERSE or
IMSL INVERSE USERIsrequired. The argument b is then ignored, and the returned value of
imsl f 1in sol posdef isNULL.

Description

The function ims1 f 1lin sol posdef solves a system of linear algebraic equations having a symmetric
positive definite coefficient matrix A. The function first computes the Cholesky factorization LLT of A. The solution

of the linear system is then found by solving the two simpler systems, y = L"'b and x = L'Ty. When the solution to
the linear system or the inverse of the matrix is sought, an estimate of the Ly condition number of A is computed

using the same algorithm as in Dongarra et al. (1979). If the estimated condition number is greater than 1/¢
(where € is the machine precision), a warning message is issued. This indicates that very small changes in A may
produce large changes in the solution x.

The function ims1 f 1lin sol posdef failsif L, the lower-triangular matrix in the factorization, has a zero
diagonal element.

= Rogygmq\{q lin_sol_posdef Chapter 1 Linear Systems

54

Examples

Example 1

A system of three linear equations with a symmetric positive definite coefficient matrix is solved in this example.
The equations are listed below:

X1 — 3X2 + 2X3 =27
—3)(1 + 10)(2 — 5X3 =-78
2X1 — 5X2 + 6)(3 =64

#include <imsl.h>

int main ()

{

int n = 3;
float *x;
float all = {1.0, =-3.0, 2.0,
-3.0, 10.0, -5.0,
2.0, -5.0, 6.0},
float b[] = {27.0, -78.0, 064.0};

/* Solve Ax = b for x */
x = imsl f 1lin sol posdef (n, a, b, 0);

/* Print x */
imsl f write matrix ("Solution, x, of Ax =Db", 1, n, x, 0);

}

Output
Solution, x, of Ax = b
1 2 3
1 -4 7
Example 2

This example solves the same system of three linear equations as in the initial example, but this time returns the

LLT factorization of A. The solution x is returned in an array allocated in the main program.

#include <imsl.h>

int main ()

{

int n = 3;
float x[3], *p factor;
float all = {1.0, -3.0, 2.0,

-3.0, 10.0, -5.0,
2.0, -5.0, 6.0};

= Rogygmqqe: lin_sol_posdef Chapter 1 Linear Systems

float bll = {27.0, -78.0, 64.0};

/* Solve Ax =

imsl f lin sol posdef (n, a, b,
IMSL RETURN USER, x,
IMSL FACTOR, é&p factor,
0);

/* Print x */
of Ax = b", 1, n, %,

imsl f write matrix ("Solution, x,

b for x */

0);

/* Print Cholesky factor of A */

imsl f write matrix ("Cholesky factor L,
n, n, p factor, 0);

}

Output

Solution, x, of Ax =D

1 2 3

1 -4 7

Cholesky factor L, and trans(L), of A
1 2 3

1 1 -3 2

2 -3 1 1

3 2 1 1

Example 3

and trans (L),

of A",

This example solves the same system as in the initial example, but given the Cholesky factors of A.

#include <imsl.h>

int main ()

{

int n = 3;
float *x, *a;
float factor[] = {1.0, -3.0, 2.0,
-3.0, 1.0, 1.0,
2.0, 1.0, 1.0};
float b[] = {27.0, -78.0, 64.0};
/* Solve Ax =
x = imsl f 1lin sol posdef (n, a, b,

IMSL FACTOR USER,
IMSL SOLVE ONLY,
0);

factor,

/* Print x */

imsl f write matrix ("Solution, x,

b for x */

of Ax = b", 1, n, X,

=RogueWave

lin_sol_posdef

Chapter 1 Linear Systems

56

Output

Solution, x, of AxXx = Db
1 2 3
1 -4 7

Warning Errors

IMSL ILL CONDITIONED The input matrix is too ill-conditioned. An estimate of
the reciprocal of its Ly condition number is
“rcond” = #. The solution might not be accurate.

Fatal Errors

IMSL NONPOSITIVE MATRIX The leading # by # submatrix of the input matrix is not
positive definite.

IMSL SINGULAR MATRIX The input matrix is singular.

IMSL SINGULAR TRI MATRIX The input triangular matrix is singular. The index of

the first zero diagonal element is #.

= R‘Dgygmq\{eg lin_sol_posdef Chapter 1 Linear Systems 57

in_sol_posdef (complex)

more. ..

Solves a complex Hermitian positive definite system of linear equations Ax = b. Using optional arguments, any of
several related computations can be performed. These extra tasks include computing the Cholesky factor, L, of A

such that A = LL™ or computing the solution to Ax = b given the Cholesky factor, L.

Synopsis
#include <imsl.h>
fcomplex *ims1l c 1lin sol posdef (intn, fcomplexal]l,fcomplexb[], .., 0)

The type d_complex functionis ims1 z lin sol posdef.

Required Arguments

intn (Input)
Number of rows and columns in the matrix.

f.complex a1 (Input)
Array of size n x n containing the matrix.

f.complexb] (Input)
Array of size n containing the right-hand side.

Return Value

A pointer to the solution x of the Hermitian positive definite linear system Ax = b. To release this space, use
imsl free.If no solution was computed, then NULL is returned.

Synopsis with Optional Arguments
#include <ims1.h>
f.complex *imsl ¢ lin sol posdef (intn, fcomplexal],fcomplexb[],
IMSL A COL _DIM,inta_col dim,

IMSL RETURN USER, fcomplexx[],

= R{ng?mq\{q lin_sol_posdef (complex) Chapter 1 Linear Systems 58

IMSL FACTOR, f complex **p factor,
IMSL FACTOR USER, fcomplex factor[],
IMSL FAC COL DIV, int fac col dim,
IMSL CONDITION, float *cond,

IMSL FACTOR ONLY,

IMSL SOLVE ONLY,

0)

Optional Arguments

IMSL A COL DIM, inta col dim (Input)
The column dimension of the array a.
Defaultta_col dim=n

IMSL RETURN USER, f complex x[] (Output)
A user-allocated array of size n containing the solution x.

IMSL FACTOR, fcomplex **p factor (Output)

The address of a pointer to an array of size n x n containing the LL" factorization of A. On return, the
necessary space is allocated by ims1 ¢ 1in sol posdef. The lower-triangular part of this

array contains L, and the upper-triangular part contains L™. Typically, f.complex *p factoris
declared, and &p factor isused as an argument.

IMSL FACTOR_USER, fcomplex factor[] (Input/Output)
A user-allocated array of size n x n containing the LL™ factorization of A. The lower-triangular part of

this array contains L, and the upper-triangular part contains L. If Ais not needed, a and factor can
share the same storage. If IMSL _SOLVE is specified, factor is input. Otherwise, it is output.

IMSL FAC COL DIM, intfac col dim (Input)
The column dimension of the array containing the LL™ factorization of A.
Default: fac_col dim=n

IMSL CONDITION, float *cond (Output)
A pointer to a scalar containing an estimate of the Ly norm condition number of the matrix A. Do not

use this option with IMSL SOLVE_ONLY.

IMSL FACTOR ONLY

Compute the Cholesky factorization LL™ of A, If IMST, FACTOR ONLY is used, either
IMSL FACTOR or IMSL FACTOR USERIs required. The argument b is then ignored, and the
returned value of imsl ¢ lin sol posdef isNULL.

= R{nggmq\{q lin_sol_posdef (complex) Chapter 1 Linear Systems

IMSL SOLVE ONLY
Solve Ax = b given the LL™ factorization previously computed by ims 1 ¢ 1lin sol posdef.By
default, the solution to Ax = b is pointed to by ims1 ¢ 1in sol posdef.|f
IMSL SOLVE ONLY is used, argument IMSL FACTOR_USERisrequired and argument a is
ignored.

Description

The function ims1 ¢ lin sol posdef solves a system of linear algebraic equations having a Hermitian
positive definite coefficient matrix A. The function first computes the LL™ factorization of A. The solution of the lin-

ear system is then found by solving the two simpler systems, y = L™'b and x = LMy. When the solution to the linear
system is required, an estimate of the Ly condition number of A is computed using the algorithm in Dongarra et

al. (1979). If the estimated condition number is greater than 1/& (where & is the machine precision), a warning
message is issued. This indicates that very small changes in A may produce large changes in the solution x. The
function imsl ¢ 1lin sol posdef failsif L, the lower-triangular matrix in the factorization, has a zero diago-
nal element.

Examples

Example 1
A system of five linear equations with a Hermitian positive definite coefficient matrix is solved in this example. The
equations are as follows:
2x1 +(=1 + i)x, =1 +5i
(=1 —xg +4x+ (1 + 2i)x3 =12 — 6/
(1 — 2/)xy +10x3 + 4ixy =1 — 16i
—4ixz +6x4+ (1 +)x5=—-3 — 3i
(1 — i)x4 + x5 =25+ 16i

#include <imsl.h>

int main ()

{

int n =>5;
f complex *x;
f complex al] = {

{2.0,0.0}, {-1.0,1.0},{0.0,0.0}, {0.0,0.0}, {0.0,0.0},
{-1.0,-1.0},{4.0,0.0}, {1.0,2.0}, {0.0,0.0}, {0.0,0.0%,
{¢.0,0.0}, {1.0,-2.0},{10.0,0.0},{0.0,4.0}, {0.0,0.0},
{06.0,0.0}, {0.0,0.0}, {0.0,-4.0},{6.0,0.0}, {1.0,1.0},
{0.0,0.0}, {0.0,0.0}, {0.0,0.0}, {1.0,-1.0},{9.0,0.0}

= R{ng?mq\{q lin_sol_posdef (complex) Chapter 1 Linear Systems 60

}s

f complex b[] = {
{r1.0,5.0}, {12.0,-6.0}, {1.0,-16.0}, {-3.0,-3.0}, {25.0,16.0}
b
/* Solve Ax = b for x */
x = imsl c lin sol posdef(n, a, b, 0);

/* Print x */

imsl ¢ write matrix("Solution, x, of Ax = Db", 1, n, x, 0);
}
Output
Solution, x, of Ax = Db
1 2 3
(2, 1) | 3, -0) -1, -1)
4 5
(0, -2) | 3, 2)

Example 2

This example solves the same system of five linear equations as in the first example. This time, the LL™ factoriza-
tion of A and the solution x is returned in an array allocated in the main program.

#include <imsl.h>

int main ()

{

(€

int n = 5;
f complex x[5], *p factor;
f complex al]l = {
{2.0,0.0}, {-1.0,1.0},{0.0,0.0}, {0.0,0.0}, {0.0,0.0},
{-1.0,-1.0},{4.0,0.0}, {1.0,2.0}, {0.0,0.0}, {0.0,0.0%,
{0.0,0.0}, {1.0,-2.0},{10.0,0.0},{0.0,4.0}, {0.0,0.0},
{0.0,0.0}, {0.0,0.0}, {0.0,-4.0},{6.0,0.0}, {1.0,1.0},
{0.0,0.0}, {0.0,0.0}, {0.0,0.0}, {1.0,-1.0},{9.0,0.0}
}i
f complex b[] = {
{1.0,5.0}, {12.0,-6.0}, {1.0,-16.0}, {-3.0,-3.0}, {25.0,16.0}
}i
/* Solve Ax = b for x */
imsl c¢ lin sol posdef(n, a, b,
IMSL RETURN USER, x,
IMSL FACTOR, é&p factor,
0);

/* Print x */
imsl ¢ write matrix("Solution, x, of Ax = Db", 1, n, x, 0);

= R{nggmq\{q lin_sol_posdef (complex) Chapter 1 Linear Systems

61

/* Print Cholesky factor of A */
imsl c write matrix("Cholesky factor L, and ctrans(L), of A",
n, n, p factor, 0);

}

Output
Solution, x, of Ax = Db
1 2 3
(2, 1) | 3, -0) -1, -1)
4 5
(0, -2) | 3, 2)
Cholesky factor L, and ctrans (L), of A
1 2 3
1 (1.414, 0.000) (-0.707, 0.707) (0.000, -0.000)
2 (-0.707, -0.707) (1.732, 0.000) (0.577, 1.155)
3 0.000, 0.000) (0.577, -1.155) (2.887, 0.000)
4 (0.000, 0.000) (0.000, 0.000) (0.000, -1.386)
5 (0.000, 0.000) (0.000, 0.000) (0.000, 0.000)
4 5
1 (0.000, -0.000) (0.000, -0.000)
2 | 0.000, -0.000) (0.000, -0.000)
3 0.000, 1.386) (0.000, -0.000)
4 (2.020, 0.000) (0.495, 0.495)
5 (0.495, -0.495) (2.917, 0.000)

= Rogypmq\{q lin_sol_posdef (complex) Chapter 1 Linear Systems 62

Warning Errors

IMSL HERMITIAN DIAG REAL 1
IMSL HERMITIAN DIAG REAL 2

IMSL ILL CONDITIONED

Fatal Errors

IMSL NONPOSITIVE MATRIX

IMSL HERMITIAN DIAG REAL

IMSL SINGULAR TRI MATRIX

The diagonal of a Hermitian matrix must be real. Its
imaginary part is set to zero.

The diagonal of a Hermitian matrix must be real. The
imaginary part will be used as zero in the algorithm.

The input matrix is too ill-conditioned. An estimate of
the reciprocal of its L, condition number is
"rcond” = #. The solution might not be accurate.

The leading # by # minor matrix of the input matrix is
not positive definite.

During the factorization the matrix has a large imagi-
nary component on the diagonal. Thus, it cannot be
positive definite.

The triangular matrix is singular. The index of the first
zero diagonal term is #.

=RogueWave

lin_sol_posdef (complex) Chapter 1 Linear Systems

63

in_sol_gen_band

more. ..

Solves a real general band system of linear equations, Ax = b. Using optional arguments, any of several related
computations can be performed. These extra tasks include computing the LU factorization of A using partial piv-

oting, solving A'x = b, or computing the solution of Ax = b given the LU factorization of A.

Synopsis
#include <imsl.h>
float *ims1l £ 1in sol gen band(intn, floata[],intnlca,intnuca, floatb[], .., 0)

The type double functionis imsl d lin sol gen band.

Required Arguments

intn (Input)
Number of rows and columns in the matrix.

floata[] (Input)
Array of size (nlca + nuca + 1) containing the n x n banded coefficient matrix in band storage mode.

intnlca (Input)
Number of lower codiagonals in a.

int nuca (Input)
Number of upper codiagonals in a.

floatb[] (Input)
Array of size n containing the right-hand side.

Return Value

A pointer to the solution x of the linear system Ax = b. To release this space use ims1_free. If no solution was

computed, then NULL is returned.

Synopsis with Optional Arguments

#include <imsl.h>

= Rogyngq\(q lin_sol_gen_band Chapter 1 Linear Systems

64

float *imsl f 1in sol gen band(intn,floata[],intnlca,intnuca, floatb[],
IMSL TRANSPOSE,
IMSL RETURN USER, float x[1,
IMSL FACTOR, int **p pvt,float **p factor,
IMSL_FACTOR USER,intpvt[],float factor[],
IMSL CONDITION, float *condition,
IMSL FACTOR ONLY,
IMSL SOLVE ONLY,
IMSL BLOCKING_ FACTOR, int block factor,

0)

Optional Arguments

IMSL TRANSPOSE

Solve ATx = b.
Default: Solve Ax = b.

IMSL RETURN USER, float x[] (Output)
A user-allocated array of length n containing the solution x.

IMSL FACTOR,int **p pvt, float **p factor (Output)

int **p pvt (Input/Output)
The address of a pointer to an array of length n containing the pivot sequence for the factoriza-
tion. On return, the necessary space is allocated by ims1 f 1lin sol gen band. Typically,
int *p_pvt is declared and &p pvt is used as an argument.

float **p factor (Input/Output)
The address of a pointer to an array of size (2nica + nuca + 1) x n containing the LU factorization
of A with column pivoting. On return, the necessary space is allocated by
imsl f 1in sol gen band. Typically, float *p factor is declared and sp_factoris
used as an argument.

IMSL FACTOR USER,intpvt[],float factor[] (Input/Output)

intpvt[] (Input/Output)
A user-allocated array of size n containing the pivot sequence for the factorization.

= R{nggmq\{q lin_sol_gen_band Chapter 1 Linear Systems

65

float factor[] (Input/Output)
A user-allocated array of size (2nlca + nuca + 1) x n containing the LU factorization of A. The
strictly lower triangular part of this array contains information necessary to construct L, and the
upper triangular part contains U. If A is not needed, factor and a can share the first (nlca +
nuca + 1) X n locations.

These parameters are “Input” if IMSL SOLVE ONLY is specified. They are “Output” otherwise.

IMSL CONDITION, float *condition (Output)
A pointer to a scalar containing an estimate of the Ly norm condition number of the matrix A. This

option cannot be used with the option IMSL SOLVE_ ONLY.

IMSL FACTOR _ONLY
Compute the LU factorization of A with partial pivoting. If IMSL FACTOR_ONLY is used, either
IMSL FACTORor IMSL FACTOR USERIsrequired. The argument b is then ignored, and the
returned value of imsl f 1in sol gen bandis NULL.

IMSL_SOLVE_ONLY
Solve Ax = b given the LU factorization previously computed by ims1 £ 1in sol gen band. By
default, the solution to Ax = b is pointed to by ims1 _f 1in sol gen band.|f
IMSL SOLVE ONLY is used, argument IMSL FACTOR_ USER is required and the argument a is
ignored.

IMSL BLOCKING FACTOR,intblock factor (Input)
The blocking factor. block factor must be set no larger than 32.
Default: block factor =1

Description

The function ims1 f 1lin sol gen band solves a system of linear algebraic equations with a real band
matrix A. It first computes the LU factorization of A based on the blocked LU factorization algorithm given in Du
Croz et al. (1990). Level-3 BLAS invocations are replaced with inline loops. The blocking factor block factor
has the default value of 1, but can be reset to any positive value not exceeding 32.

The solution of the linear system is then found by solving two simpler systems, y = L™'b and x = U “'y. When the
solution to the linear system or the inverse of the matrix is sought, an estimate of the L, condition number of A is
computed using Higham's modifications to Hager's method, as given in Higham (1988). If the estimated condition
number is greater than 1/e (where € is the machine precision), a warning message is issued. This indicates that
very small changes in A may produce large changes in the solution x. The function

imsl f 1lin sol gen bandfails if U, the upper triangular part of the factorization, has a zero diagonal
element.

= Rogygmq\{q lin_sol_gen_band Chapter 1 Linear Systems

66

Examples

Example 1

This example demonstrates the simplest use of this function by solving a system of four linear equations. The
equations are as follows:

2X1 — X, =3
=3X1+ X, —2x3=1

X3+ 2x, =11

23+ Xy =—-2

#include <imsl.h>

int main ()

{
int n = 4;
int nuca = 1;
int nlca = 1;
float *X;
/* Note that a is in band storage mode */
float al] = {0.0, -1.0, -2.0, 2.0,
2.0, 1.0, -1.0, 1.0,
-3.0, 0.0, 2.0, 0.0},
float b[] = {3.0, 1.0, 11.0, -2.0};
x = imsl f lin sol gen band (n, a, nlca, nuca, b, 0);
imsl f write matrix ("Solution x, of Ax = Db", 1, n, x, 0);
1
Output
Solution x, of Ax = Db
1 2 3 4
2 1 -3 4
Example 2

In this example, the problem Ax = b is solved using the data from the first example. This time, the factorizations

are returned and the problem A'x = b is solved without recomputing LU.

#include <imsl.h>

int main ()

{

int n = 4;

= R{ng?mq\{q lin_sol_gen_band Chapter 1 Linear Systems 67

int nlca = 1;
int nuca = 1;
int *pivot;

f complex *x;

f complex *factor;

/* Note that a is in band storage mode */

f complex al] =
{{0.0, 0.0}, {4.0, 0.0}, {-2.0, 2.0}, {-4.0, -1.0},
{-2.0, -3.0}, {-0.5, 3.0}, {3.0, -3.0}, {1.0, -1.0}%,

{6.0, 1.0}, {1.0, 1.0}, {0.0, 2.0}, {0.0, 0.0}};
f complex b[] =
{{-10.0, -5.0}, {9.5, 5.5}, {12.0, -12.0}, {0.0, 8.0%}};

/* Solve Ax = b and return LU */

x = imsl ¢ lin sol gen band (n, a, nlca, nuca, b,
IMSL FACTOR, ¢&pivot, &factor,
0);

imsl c write matrix ("solution of Ax = b", n, 1, x,
0);

imsl free (x);

/* Use precomputed LU to solve ctrans(A)x = b */
x = imsl c¢ lin sol gen band (n, a, nlca, nuca, b,
IMSL FACTOR USER, pivot, factor,
IMSL_TRANS POSE,

0);
imsl ¢ write matrix ("solution of ctrans(A)x = b", n, 1, x,
0);
}
Output
Solution of Ax = b
1 2 3 4
2 1 -3 4
Solution of trans(A)x = Db
1 2 3 4
-6 -5 -1 -0

= R{ng?mq\{q lin_sol_gen_band Chapter 1 Linear Systems 68

Warning Errors

IMSL ILL CONDITIONED The input matrix is too ill-conditioned. An estimate of
the reciprocal of its Ly condition number is
“rcond” = #. The solution might not be accurate.

Fatal Errors

IMSL SINGULAR MATRIX The input matrix is singular.

EE R‘D gy?ﬂq\{q lin_sol_gen_band Chapter 1 Linear Systems 69

in_sol_gen_band (complex)

more. ..

Solves a complex general band system of linear equations Ax = b. Using optional arguments, any of several
related computations can be performed. These extra tasks include computing the LU factorization of A using par-

tial pivoting, solving AMlx = b, or computing the solution of Ax = b given the LU factorization of A.

Synopsis
#include <ims1.h>

fcomplex *imsl c 1in sol gen band(intn,fcomplexa(],intnlca,intnuca, fcomplexb[],
. 0)

The type double functionis ims1 _z lin sol gen band.

Required Arguments

int n (Input)
Number of rows and columns in the matrix.

f.complex al] (Input)

Array of size (nlca + nuca + 1) X n containing the n x n banded coefficient matrix in band storage
mode.

intnlca (Input)
Number of lower codiagonals in a.

int nuca (Input)
Number of upper codiagonals in a.

f.complexb [1 (Input)
Array of size n containing the right-hand side.

Return Value

A pointer to the solution x of the linear system Ax = b. To release this space use ims1 free. If no solution was
computed, NULL is returned.

EE R{ngg\ﬂg\{q lin_sol_gen_band (complex)

Chapter 1 Linear Systems

70

Synopsis with Optional Arguments

#include <imsl.h>

fcomplex *imsl c 1lin sol gen band(intn,f complex a[],intnlca,intnuca, f complexb[],
IMSL TRANSPOSE,
IMSL RETURN USER, f complex x[1],
IMSL FACTOR,int **p pvt, fcomplex **p factor,
IMSL FACTOR USER,intpvt[],fcomplex factor[],
IMSL CONDITION, float *condition,
IMSL_FACTOR ONLY,
IMSL_SOLVE_ONLY,

0)

Optional Arguments

IMSL TRANSPOSE

Solve Afx = b
Default: Solve Ax = b.

IMSL RETURN USER, f complex x[] (Output)
A user-allocated array of length n containing the solution x.

IMSL FACTOR,int **p pvt, fcomplex **p factor (Output)

int **p pvt (Input/Output)
The address of a pointer to an array of length n containing the pivot sequence for the factoriza-
tion. On return, the necessary space is allocated by ims1 ¢ 1in sol gen band. Typically,
int *p_pvt is declared and &p_pvt is used as an argument.

f.complex **p factor (Input/Output)
The address of a pointer to an array of size (2nlca + nuca + 1) x n containing the LU factorization
of A with column pivoting. On return, the necessary space is allocated by
imsl ¢ lin sol gen band. Typically, f.complex *p factor is declared and
&p_factor isused as an argument.

IMSL FACTOR USER,intpvt[],fcomplex factor[] (Input/Output)

intpvt[] (Input/Output)
A user-allocated array of size n containing the pivot sequence for the factorization.

= R{nggmq\{q lin_sol_gen_band (complex) Chapter 1 Linear Systems

71

f.complex factor[] (Input/Output)
A user-allocated array of size (2nlca + nuca + 1) x n containing the LU factorization of A. If A is not
needed, factor and a can share the first (nlca + nuca + 1) x n locations.

These parameters are “Input” if IMSL SOLVE ONLY is specified. They are “Output” otherwise.

IMSL CONDITION, float *condition (Output)
A pointer to a scalar containing an estimate of the Ly norm condition number of the matrix A. This
option cannot be used with the option IMSL SOLVE_ONLY.

IMSL FACTOR _ONLY
Compute the LU factorization of A with partial pivoting. If IMSL FACTOR_ONLY is used, either
IMSL FACTORor IMSL FACTOR USERIsrequired. The argument b is then ignored, and the
returned value of imsl ¢ 1in sol gen bandis NULL.

IMSL_SOLVE_ONLY
Solve Ax = b given the LU factorization previously computed by ims1 ¢ lin sol gen band. By
default, the solution to Ax = b is pointed to by ims1 ¢ 1in sol gen band.If

IMSL SOLVE ONLY is used, argument IMSL FACTOR_ USER is required and argument a is
ignored.

Description

Thefunctionimsl c¢ 1lin sol gen bandsolves asystem of linear algebraic equations with a complex band
matrix A. It first computes the LU factorization of A using scaled partial pivoting. Scaled partial pivoting differs
from partial pivoting in that the pivoting strategy is the same as if each row were scaled to have the same L,
norm. The factorization fails if U has a zero diagonal element. This can occur only if A is singular or very close to a
singular matrix.

The solution of the linear system is then found by solving two simpler systems, y = L™'b and x = U "'y. When the
solution to the linear system or the inverse of the matrix is sought, an estimate of the L4 condition number of Ais
computed using Higham's modifications to Hager's method, as given in Higham (1988). If the estimated condition
number is greater than 1/& (where € is the machine precision), a warning message is issued. This indicates that
very small changes in A may produce large changes in the solution x. The function

imsl ¢ lin sol gen band fails if U, the upper triangular part of the factorization, has a zero diagonal ele-
ment. The function ims1 ¢ 1lin sol gen bandis based on the LINPACK subroutine CGBFA; see Dongarra
et al. (1979). CGBFA uses unscaled partial pivoting.

Examples

Example 1

The following linear system is solved:

= R{nggmq\{q lin_sol_gen_band (complex) Chapter 1 Linear Systems

72

—2-3i 4 0 0 X0 —-10—-5i
6+i —-05+3i -2+2i 0 Xl _[95+5.5i

0 1+i 3-3i —4-1||x| | 12-12i
0 0 2i 1—1i X3 8i
#include <imsl.h>
int main ()
{
int n = 4;
int nlca = 1;
int nuca = 1;

f complex *xX;
/* Note that a is in band storage mode */

f complex all] =
{{06.0, 0.0}, {4.0, 0.0}, {-2.0, 2.0}, {-4.0, -1.0},
{-2.0, -3.0}, {-0.5, 3.0}, {3.0, -3.0}, {1.0, -1.0},
{6.0, 1.0}, {1.0, 1.0}, {0.0, 2.0}, {0.0, 0.0}};

f complex b[] =
{{-10.0, -5.0}, {9.5, 5.5}, {12.0, -12.0}, {0.0, 8.0%}};

x = imsl c lin sol gen band (n, a, nlca, nuca, b, 0);
imsl ¢ write matrix ("Solution, x, of Ax = Db", n, 1, x, 0);
}
Output
Solution, x, of Ax = Db
1 | 3, -0)
2 (-1, 1)
3 3, 0)
4 | -1, 1)
Example 2

This example solves the problem Ax = b using the data from the first example. This time, the factorizations are

returned and then the problem Ax = b is solved without recomputing LU.

#include <imsl.h>

int main ()

{

int n = 4;
int nlca = 1;
int nuca = 1;

= R{nggmq\{q lin_sol_gen_band (complex) Chapter 1 Linear Systems

73

int *pivot;
f complex *x;
f complex *factor;

/* Note that a is in band storage mode */

f complex all] =
{{0.0, 0.0}, {4.0, 0.0}, {-2.0, 2.0}, {-4.0, -1.0%,
{-2.0, -3.0}, {-0.5, 3.0}, {3.0, -3.0}, {1.0, -1.0},
{6.0, 1.0}, {r.0, 1.0}, {0.0, 2.0}, {0.0, 0.0}1};

f complex b[] =
{{-10.0, -5.0}, {9.5, 5.5}, {12.0, -12.0}, {0.0, 8.0}};

/* Solve Ax = b and return LU */

x = imsl ¢ lin sol gen band (n, a, nlca, nuca, b,
IMSL FACTOR, é&pivot, &factor,
0) 7

imsl ¢ write matrix ("solution of Ax = b", n, 1, X%,
0);

imsl free (x);

/* Use precomputed LU to solve ctrans(A)x = b */
x = imsl ¢ lin sol gen band (n, a, nlca, nuca, b,
IMSL FACTOR USER, pivot, factor,
IMSL TRANSPOSE,

0);
imsl c write matrix ("solution of ctrans(A)x = b", n, 1, Xx,
0);
}
Output
solution of Ax = Db
1 (3, -0)
2 (-1, 1)
3 | 3, 0)
4 (-1, 1)

solution of ctrans(A)x = Db

1 5.58, -2.91)
2 (-0.48, -4.67)
3 (-6.19, 7.15)
4 | 12.60, 30.20)

= R{nggmq\{q lin_sol_gen_band (complex) Chapter 1 Linear Systems 74

Warning Errors

IMSL ILL CONDITIONED The input matrix is too ill-conditioned. An estimate of
the reciprocal of its Ly condition number is
“rcond” = #. The solution might not be accurate.

Fatal Errors

IMSL SINGULAR MATRIX The input matrix is singular.

EE Rogygmg\{q lin_sol_gen_band (complex) Chapter 1 Linear Systems 75

in_sol_posdef_band

more. ..

Solves a real symmetric positive definite system of linear equations Ax = b in band symmetric storage mode.
Using optional arguments, any of several related computations can be performed. These extra tasks include com-

puting the R'R Cholesky factorization of A, computing the solution of Ax = b given the Cholesky factorization of A,
or estimating the L, condition number of A.

Synopsis
#include <ims1l.h>
float *ims1l £ 1in sol posdef band(intn, floatal[],intncoda, floatb[], .., 0)

The type double functionis imsl d lin sol posdef band.

Required Arguments

intn (Input)
Number of rows and columns in the matrix.

floata[] (Input)
Array of size (ncoda + 1) X n containing the n x n positive definite band coefficient matrix in band

symmetric storage mode.

int ncoda (Input)
Number of upper codiagonals of the matrix.

floatb[] (Input)
Array of size n containing the right-hand side.

Return Value

A pointer to the solution x of the linear system Ax = b. To release this space use ims1_free. If no solution was
computed, then NULL is returned.

Synopsis with Optional Arguments

#include <imsl.h>

= Rogyngq\(q lin_sol_posdef_band Chapter 1 Linear Systems

float *imsl f 1in sol posdef band(intn,floata[],intncoda, floatb[],
IMSL RETURN USER, float x[1,
IMSL_FACTOR, float **p_ factor,
IMSL FACTOR USER, float factor([],
IMSL CONDITION, float *cond,
IMSL FACTOR ONLY,
IMSL SOLVE ONLY,

0)

Optional Arguments

IMSL RETURN USER, float x[] (Output)
A user-allocated array of length n containing the solution x.

IMSL FACTOR, float **p factor (Output)
The address of a pointer to an array of size (ncoda + 1) x n containing the LLT factorization of A. On
return, the necessary space is allocated by ims1 f 1lin sol posdef band. Typically,
float *p_ factorisdeclared and &p_factor isused as an argument.

IMSL FACTOR USER, float factor[] (Input/Output)
A user-allocated array of size (ncoda + 1) x n containing the LL' factorization of A in band symmetric
form. If Ais not needed, factor and a can share the same storage. These parameters are “Input” if
IMSL SOLVE is specified. They are “Output” otherwise.

IMSL CONDITION, float *cond (Output)
A pointer to a scalar containing an estimate of the L norm condition number of the matrix A. This

option cannot be used with the option IMSL SOLVE_ONLY.

IMSL FACTOR ONLY

Compute the LLT factorization of A. If IMST, FACTOR ONLY is used, either IMST, FACTOR or
IMSL FACTOR_USERIsrequired. The argument b is then ignored, and the returned value of
imsl f 1lin sol posdef bandis NULL.

IMSL SOLVE ONLY
Solve Ax = b given the LL" factorization previously computed by
imsl f 1in sol posdef band. By default, the solution to Ax = b is pointed to by
imsl f 1lin sol posdef band. If IMSL SOLVE ONLY is used, argument
IMSL FACTOR USERIsrequired and the argument a is ignored.

= R{nggmq\{q lin_sol_posdef_band Chapter 1 Linear Systems 77

Description

The function ims1 f 1lin sol posdef band solves a system of linear algebraic equations with a real sym-

metric positive definite band coefficient matrix A. It computes the RTR Cholesky factorization of A. R is an upper
triangular band matrix.

When the solution to the linear system or the inverse of the matrix is sought, an estimate of the L4 condition

number of A is computed using Higham's modifications to Hager's method, as given in Higham (1988). If the esti-
mated condition number is greater than 1/& (where € is the machine precision), a warning message is issued. This
indicates that very small changes in A may produce large changes in the solution x.

The function ims1 f 1lin sol posdef band failsif any submatrix of R is not positive definite or if R has a
zero diagonal element. These errors occur only if A is very close to a singular matrix or to a matrix which is not
positive definite.

The function ims1 f 1lin sol posdef bandis partially based on the LINPACK subroutines CPBFA and
SPBSL; see Dongarra et al. (1979).

Example 1

Solves a system of linear equations Ax = b, where

2 0 -1 0O 6
0 4 2 1 | -11
A=120 5 7 g adb=|_py
0 1 -1 3 19
#include <imsl.h>
int main ()
{
int n = 4;
int ncoda = 2;
float *x;

/* Note that a is in band storage mode */

float all = {0.0, 0.0, -1.0, 1.0,
0.0, 0.0, 2.0, -1.0,
2.0, 4.0, 7.0, 3.0};
float b[] = {6.0, -11.0, -11.0, 19.0};
x = imsl f lin sol posdef band (n, a, ncoda, b, 0);

imsl f write matrix ("Solution, x, of Ax =Db", 1, n, x, 0);

= R{nggmq\{q lin_sol_posdef_band Chapter 1 Linear Systems

Output

Solution, x, of Ax =D
1 2 3 4
4 -6 2 9
Example 2

This example solves the same problem Ax = b given in the first example. The solution is returned in user-allocated
space and an estimate of k4(A) is computed. Additionally, the R'R factorization is returned. Then, knowing that

K¢ (A) = [|All 1A, the condition number is computed directly and compared to the estimate from Higham's
method.

#include <imsl.h>
#include <stdio.h>

int main ()

{

int n = 4;
int ncoda = 2;
float al] =
{0.0, 0.0, -1.0, 1.0,
0.0, 0.0, 2.0, -1.0,
2.0, 4.0, 7.0, 3.0};
float b[] = {6.0, -11.0, -11.0, 19.0};
float x[47];
float e 1[4];
float *factor;
float condition;
float column norm;
float inverse norm;
int i;
int 3

imsl £ lin sol posdef band (n, a,
IMSL FACTOR, &factor,
IMSL CONDITION, é&condition,
IMSL RETURN USER, x,
0) 7

ncoda, b,

imsl f write matrix
0);

("Solution, x, of Ax = Db", 1, n, X,

/* find one norm of inverse */

inverse norm = 0.0;
for (i=0; i<n; i++) {
for (3=0; Jj<n; j++) e i[j] = 0.0;

lin_sol_posdef_band

=RogueWave

Chapter 1 Linear Systems

79

e i[i] = 1.0;

/* determine one norm of each column of inverse */
imsl f 1lin sol posdef band (n, a, ncoda, e i,

IMSL FACTOR USER, factor,

IMSL SOLVE_ONLY,

IMSL RETURN USER, x,

0) 7

column norm = imsl f vector norm (n, x,
IMSL_ONE_NORM,
0);

/* the max of the column norms is the norm of
inv (A) */
if (inverse norm < column norm)

inverse norm = column norm;

/* by observation, one norm of A is 11 */

printf ("\nHigham’s condition estimate = %f\n", condition);
printf ("Direct condition estimate = $f\n",

11.0*inverse norm) ;

Output

Solution, x, of Ax = Db
1 2 3 4
4 -6 2 9
Higham’s condition estimate = 8.650485
Direct condition estimate = 8.650485
Warning Errors
IMSL ILL CONDITIONED The input matrix is too ill-conditioned. An estimate of

the reciprocal of its L condition number is

“rcond” = #.
The solution might not be accurate.

Fatal Errors

IMSL NONPOSITIVE MATRIX The leading # by # submatrix of the input matrix is not
positive definite.

IMSL SINGULAR MATRIX The input matrix is singular

= R{nggmq\{q lin_sol_posdef_band Chapter 1 Linear Systems

in_sol_posdef_band (complex)

more. ..

Solves a complex Hermitian positive definite system of linear equations Ax = b in band symmetric storage mode.
Using optional arguments, any of several related computations can be performed. These extra tasks include com-

puting the R™R Cholesky factorization of A, computing the solution of Ax = b given the Cholesky factorization of A,
or estimating the L, condition number of A.

Synopsis
#include <imsl.h>
fcomplex *imsl c lin sol posdef band(intn,fcomplexa[],intncoda,fcomplexb[],..,0)

The type double functionis imsl z lin sol posdef band.

Required Arguments

intn (Input)
Number of rows and columns in the matrix.

f.complex a[] (Input)
Array of size (ncoda + 1) X n containing the n x n positive definite band coefficient matrix in band

symmetric storage mode.

int ncoda (Input)
Number of upper codiagonals of the matrix.

f.complexb[] (Input)
Array of size n containing the right-hand side.

Return Value

A pointer to the solution x of the linear system Ax = b. To release this space use ims1_free. If no solution was
computed, then NULL is returned.

Synopsis with Optional Arguments

#include <imsl.h>

= R{nggﬂg\{q lin_sol_posdef_band (complex) Chapter 1 Linear Systems

fcomplex *imsl c lin sol posdef band (intn,fcomplexal],intncoda, fcomplexb[],
IMSL RETURN USER, f complex x[1],
IMSL FACTOR, f complex **p factor,
IMSL FACTOR USER, fcomplex factor[],
IMSL CONDITION, float *condition,
IMSL FACTOR ONLY,
IMSL SOLVE ONLY,

0)

Optional Arguments

IMSL RETURN USER, fcomplex x[] (Output)
A user-allocated array of length n containing the solution x.

IMSL FACTOR, f complex **p factor (Output)
The address of a pointer to an array of size (ncoda + 1) x n containing the R™R factorization of A. On
return, the necessary space is allocated by ims1 ¢ 1lin sol posdef band. Typically,
f.complex *p factorisdeclared and &p factor is used as an argument.

IMSL FACTOR USER,fcomplex factor[] (Input/Output)
A user-allocated array of size (ncoda + 1) x n containing the R"R factorization of A in band symmetric
form. If Ais not needed, factor and a can share the same storage. These parameters are “Input” if
IMSL SOLVE is specified. They are “Output” otherwise.

IMSL CONDITION, float *condition (Output)
A pointer to a scalar containing an estimate of the L norm condition number of the matrix A. This

option cannot be used with the option IMSL SOLVE_ONLY.

IMSL FACTOR ONLY

Compute the RMR factorization of A. If IMSI, FACTOR ONLY is used, either IMSI, FACTOR or
IMSL FACTOR_USERIsrequired. The argument b is then ignored, and the returned value of
imsl ¢ lin sol posdef band isNULL.

IMSL SOLVE ONLY
Solve Ax = b given the RMR factorization previously computed by
imsl ¢ lin sol posdef band. By default, the solution to Ax = b is pointed to by
imsl ¢ lin sol posdef band.If IMSL SOLVE ONLY is used, argument
IMSL FACTOR USERIsrequired and the argument a is ignored.

= R{ng?mq\{q lin_sol_posdef_band (complex) Chapter 1 Linear Systems 82

Description

The function ims1 ¢ 1lin sol posdef band solves a system of linear algebraic equations with a real sym-

metric positive definite band coefficient matrix A. It computes the R™R Cholesky factorization of A. Argument R is
an upper triangular band matrix.

When the solution to the linear system or the inverse of the matrix is sought, an estimate of the L4 condition

number of A is computed using Higham's modifications to Hager's method, as given in Higham (1988). If the esti-
mated condition number is greater than 1/& (where € is the machine precision), a warning message is issued. This
indicates that very small changes in A may produce large changes in the solution x.

The function ims1 ¢ 1lin sol posdef band failsif any submatrix of R is not positive definite or if R has a
zero diagonal element. These errors occur only if A is very close to a singular matrix or to a matrix which is not
positive definite.

The function ims1 ¢ 1lin sol posdef bandis based partially on the LINPACK sub-routines SPBFA and
CPBSL; see Dongarra et al. (1979).

Examples

Example 1

Solve a linear system Ax = b where

2 —1+i 0 0 0 1+5i
—1—1i 4 1+2i 0 0 12 - 6i
A= 0 1-2i 10 4i 0 and b = 1—16i
0 0 —4i 6 1+ -3 -3
0 0 0 1—1i 9 25+ 16i
#include <imsl.h>
int main ()
{
int n =5;
int ncoda = 1;

f complex *x;
/* Note that a is in band storage mode */

f complex al[] =
{{06.0, 0.0}, {-1.0, 1.0}, {1.0, 2.0}, {0.0, 4.0},
{1.0, 1.0},
{2.0, 0.0}, {4.0, 0.0}, {10.0, 0.0}, {6.0, 0.0},
{9.0, 0.0}};
f complex Db[] =
{{r.0, 5.0}, {12.0, -6.0}, {1.0, -16.0},{-3.0, =-3.0},

= R{nggmq\{q lin_sol_posdef_band (complex) Chapter 1 Linear Systems

83

{25.0, 16.0}};

x = imsl c lin sol posdef band (n, a, ncoda, b, 0);
imsl ¢ write matrix ("Solution, x, of Ax = Db", n, 1, x, 0);

}

Output

Solution, x, of Ax = Db

1« 2, 1)

2 (3, -0)

3 -1, -1)

4 (0, -2)

5 (3, 2)

Example 2

This example solves the same problem Ax = b given in the first example. The solution is returned in user-allocated

space and an estimate of k4(A) is computed. Additionally, the R™R factorization is returned. Then, knowing that

|qM):HAHHA4H¢heaNmnmnnuw@erﬁcompumddwedWandcompamdtoﬁme5ﬂmamfmnwthaﬂg
method.

#include <imsl.h>
#include <stdio.h>
#include <math.h>

int main ()

{

int n =25, ncoda =1, 1, Jj;:

/* Note that a is in band storage mode */
f complex afl] =
{{6.0, 0.0}, {-1.0, 1.0}, {1.0, 2.0}, {0.0, 4.0},
{1.0, 1.0},
{2.0, 0.0}, {4.0, 0.0}, {10.0, 0.0}, {6.0, 0.0},
{9.0, 0.0}};
f complex Db[] =
{{1.0, 5.0}, {12.0, -6.0}, {1.0, -16.0},{-3.0, -3.0},
{25.0, 16.0}};
f complex x[5], e i[5], *factor;
float condition, column norm, inverse norm;

imsl ¢ lin sol posdef band (n, a, ncoda, b,
IMSL FACTOR, &factor,
IMSL_CONDITION, &condition,
IMSL RETURN USER, x,
0);

= R{nggmq\{q lin_sol_posdef_band (complex) Chapter 1 Linear Systems

imsl ¢ write matrix ("Solution, x, of Ax =Db", 1, n, x, 0);

/* Find one norm of inverse */
inverse norm = 0.0;

for (i=0; i<n; i++) {
for (j=0; j<n; j++) e i[j] = imsl cf convert (0.0, 0.0);
e i[i] = imsl cf convert (1.0, 0.0);

/* Determine one norm of each column of inverse */
imsl ¢ lin sol posdef band (n, a, ncoda, e i,

IMSL FACTOR USER, factor,

IMSL SOLVE ONLY,

IMSL _RETURN USER, X,

0)7;

column norm = imsl ¢ vector norm (n, X,
IMSL_ONE_NORM,
0);

/* The max of the column norms is the norm of inv(A) */
if (inverse norm < column norm)
inverse norm = column norm;

/* By observation, one norm of A is 1l4+sqgrt(5) */

printf ("\nHigham’s condition estimate = %7.4f\n", condition);
printf ("Direct condition estimate = %7.4f\n",

(14.0+sqrt (5.0)) *inverse norm) ;

}

Output
Solution, x, of Ax = Db
1 2 3
(2, 1) | 3, -0) « -1, -1)
4 5
(0, -2) (3, 2)

Higham’s condition estimate = 19.3777
Direct condition estimate = 19.3777

= R{ng?mq\{q lin_sol_posdef_band (complex) Chapter 1 Linear Systems 85

Warning Errors

IMSL ILL CONDITIONED The input matrix is too ill-conditioned. An estimate of
the reciprocal of its Ly condition number is
“rcond” = #.

The solution might not be accurate.

Fatal Errors

IMSL NONPOSITIVE MATRIX The leading # by # submatrix of the input matrix is not
positive definite.

IMSL SINGULAR MATRIX The input matrix is singular.

= Rogygmg\{q lin_sol_posdef_band (complex) Chapter 1 Linear Systems 86

in_sol_gen_coordinate

more. ..

Solves a sparse system of linear equations Ax = b. Using optional arguments, any of several related computations
can be performed. These extra tasks include returning the LU factorization of A, computing the solution of Ax = b
given an LU factorization, setting drop tolerances, and controlling iterative refinement.

Synopsis
#include <ims1l.h>
float *imsl f 1in sol gen coordinate (intn,int nz, Imslf sparse_elem *a, float *b, .., 0)

The type double functionis imsl d lin sol gen coordinate.

Required Arguments

intn (Input)
Number of rows in the matrix.

int nz (Input)
Number of nonzeros in the matrix.

Imsl_f sparse_elem *a (Input)
Vector of length nz containing the location and value of each nonzero entry in the matrix.

float *b (Input)
Vector of length n containing the right-hand side.

Return Value

A pointer to the solution x of the sparse linear system Ax = b. To release this space, use ims1 free. If no solu-

tion was computed, then NULL is returned.

Synopsis with Optional Arguments
#include <ims1.h>
float *imsl f 1in sol gen coordinate (intn,int nz, Imslf sparse_elem *a, float *b,

IMSL RETURN SPARSE LU FACTOR,Imslf sparse_lu_factor *1u factor,

= R{ng?mq\{q lin_sol_gen_coordinate Chapter 1 Linear Systems 87

IMSL SUPPLY SPARSE LU FACTOR, Imslf sparse_lu_factor *1u factor,
IMSL FREE SPARSE LU FACTOR,

IMSL RETURN SPARSE LU IN COORD, Imslf sparse_elem **1u coordinate, int

**row pivots,int **col pivots,

IMSL SUPPLY SPARSE LU IN COORD,intnzlu, Imslf sparse_elem *1u coordinate,int

*row pivots,int*col pivots,
IMSL_FACTOR_ONLY,
IMSL_SOLVE_ONLY,
IMSL_RETURN USER, float x[],
IMSL TRANSPOSE,
IMSL CONDITION, float *condition,
IMSL PIVOTING STRATEGY, /Ims/_pivotmethod,
IMSL NUMBER OF SEARCH ROWS,intnum search row,
IMSL ITERATIVE REFINEMENT,
IMSL DROP TOLERANCE, float tolerance,
IMSL HYBRID FACTORIZATION, float density, int orde r bound,
IMSL STABILITY FACTOR, float s factor,
IMSL GROWTH FACTOR LIMIT, float gf limit,
IMSL GROWTH_ FACTOR, float *gf,
IMSL SMALLEST P IVOT, float *small pivot
IMSL NUM NONZEROS IN FACTOR,int *num nonzeros,
IMSL CSC_FORMAT,int *col ptr,int *row_ind, float *values,
IMSL MEMORY BLOCK SIZE,intblock size,

0)

Optional Arguments

IMSL RETURN SPARSE LU FACTOR, Imslf sparse_lu_factor *1u_ factor (Output)
The address of a structure of type Imsl_f sparse_lu_factor. The pointers within the structure are initial-
ized to pointto the LU factorizationbyimsl f 1in sol gen coordinate.

= R{ng?mq\{q lin_sol_gen_coordinate Chapter 1 Linear Systems 88

IMSL SUPPLY SPARSE LU FACTOR, Imslf sparse_lu_factor *1u_ factor (Input)
The address of a structure of type Imsl_f sparse_lu_factor. This structure contains the LU factorization
of the input matrix computed by ims1 f 1in sol gen coordinate withthe
IMSL _RETURN SPARSE LU FACTOR option.

IMSL _FREE SPARSE LU FACTOR
Before returning, free the linked list data structure containing the LU factorization of A. Use this
option only if the factors are no longer required.

IMSL RETURN SPARSE LU IN COORD,/mslf sparse_elem **1u coordinate,
int **row _pivots,int **col pivots (Output)
The LU factorization is returned in coordinate form in an array of length nz in 1u_coordinate.
This is more compact than the internal representation encapsulated in Imsl_f sparse_lu_factor. The
disadvantage is that during a SOLVE_ONLY call, the internal representation of the factor must be
reconstructed. If however, the factor is to be stored after the program exits, and loaded again at
some subsequent run, the combination of IMSL RETURN LU IN COORD and
IMSL SUPPLY LU IN COORD is probably the best choice, since the factors are in a format that is
simple to store and read.

IMSL SUPPLY SPARSE LU IN COORD,intnzlu, Imslfsparse_elem *1u coordinate,
int *row pivots,int *col pivots (Input)
Supply the LU factorization in coordinate form. See IMSL RETURN SPARSE LU IN COORD fora
description.

IMSL FACTOR ONLY,
Compute the LU factorization of the input matrix and return. The argument b is ignored.

IMSL SOLVE_ONLY,
Solve Ax = b given the LU factorization of A. This option requires the use of option
IMSL SUPPLY SPARSE LU FACTORoOr IMSL SUPPLY SPARSE LU IN COORD

IMSL RETURN USER, float x[] (Output)
A user-allocated array of length n containing the solution x.

IMSL TRANSPOSE,

Solve the problem A'x = b. This option can be used in conjunction with either of the options that sup-
ply the factorization.

IMSL CONDITION, float *condition,
Estimate the L4 condition number of A and return in the variable condition.

IMSL PIVOTING STRATEGY, Imsl_pivot method (Input)
Select the pivoting strategy by setting method to one of the following: IMSL. ROW MARKOWITZ,
IMSL COLUMN MARKOWITZ, or IMSL SYMMETRIC MARKOWITZ.
Default: IMSL_SYMMETRIC MARKOWITZ.

= Rogygmq\{q lin_sol_gen_coordinate Chapter 1 Linear Systems

89

IMSL NUMBER OF SEARCH ROWS,intnum search row (Input)
The number of rows which have the least number of nonzero elements that will be searched for a
pivot element.
Default: num_search row =3.

IMSL ITERATIVE REFINEMENT,
Select this option if iterative refinement is desired.

IMSL DROP TOLERANCE, float tolerance (Input)
Possible fill-in is checked against tolerance. If the absolute value of the new element is less than
tolerance, it will be discarded.
Default: tolerance =0.0.

IMSL HYBRID FACTORIZATION, float density,intorder bound,
Enable the function to switch to a dense factorization method when the density of the active subma-
trix reaches 0.0 < density < 1.0 and the order of the active submatrix is less than or equal to

order bound.

IMSL_STABILITY_FACTOR,f/OGl’ s _factor (Input)
The absolute value of the pivot element must be bigger than the largest element in absolute value in
its row divided by s factor.
Default: s factor =10.0.

IMSL _GROWTH FACTOR_LIMIT,floatgf limit (Input)
The computation stops if the growth factor exceeds gf limit.
Default: gf 1imit =1.0el6.

IMSL_GROWTH_FACTOR,f/OGt *gf (Output)
Argument gf is calculated as the largest element in absolute value at any stage of the Gaussian elim-
ination divided by the largest element in absolute value in A.

IMSL SMALLEST PIVOT,float *small pivot (Output)
A pointer to the value of the pivot element of smallest magnitude that occurred during the
factorization.

IMSL NUM NONZEROS IN FACTOR,int *num nonzeros (Output)
A pointer to a scalar containing the total number of nonzeros in the factor.

IMSL CSC_FORMAT,int *col ptr,int *row ind, float *values (Input)
Accept the coefficient matrix in Compressed Sparse Column (CSC) Format. See the main “Introduc-
tion” chapter of this manual for a discussion of this storage scheme.

IMSL_MEMORY BLOCK SIZE, intblocksize (Input)
If space must be allocated for fill-in, allocate enough space for blocksize new nonzero elements.
Default: blocksize =nz.

= Rogygmq\{q lin_sol_gen_coordinate Chapter 1 Linear Systems

90

Description

The function ims1 f 1lin sol gen coordinate solves a system of linear equations Ax = b, where Ais
sparse. In its default use, it solves the so-called one off problem, by first performing an LU factorization of A using
the improved generalized symmetric Markowitz pivoting scheme. The factor L is not stored explicitly because the
saxpy operations performed during the elimination are extended to the right-hand side, along with any row
interchanges. Thus, the system Ly = b is solved implicitly. The factor U is then passed to a triangular solver which
computes the solution x from Ux =y.

If a sequence of systems Ax = b are to be solved where A is unchanged, it is usually more efficient to compute the
factorization once, and perform multiple forward and back solves with the various right-hand sides. In this case,
the factor L is explicitly stored and a record of all row as well as column interchanges is made. The solve step then
solves the two triangular systems Ly = b and Ux = y. The user specifies either the

IMSL RETURN SPARSE LU FACTORor the IMSL RETURN LU IN COORD option to retrieve the factor-
ization, then calls the function subsequently with different right-hand sides, passing the factorization back in
using either IMSL,_SUPPLY SPARSE LU FACTOR or IMSL SUPPLY SPARSE LU IN COORD in conjunc-
tion with IMSL_SOLVE_ONLY. If IMSL RETURN SPARSE LU FACTORis used, the final call to

imsl lin sol gen coordinate shouldinclude IMSL FREE SPARSE LU FACTOR to release the
heap used to store L and U.

If the solution to A'x = b is required, specify the option IMSL TRANSPOSE. This keyword only alters the forward
elimination and back substitution so that the operations U'y = b and L"x = y are performed to obtain the solution.

So, with one call to produce the factorization, solutions to both Ax = b and A'x = b can be obtained.

The option IMSL_CONDITION is used to calculate and return an estimation of the L, condition number of A.

The algorithm used is due to Higham. Specification of IMSL._ CONDITION causes a complete L to be computed
and stored, even if a one off problem is being solved. This is due to the fact that Higham's method requires solu-

tion to problems of the form Az=rand A'z=r.

The default pivoting strategy is symmetric Markowitz. If a row or column oriented problem is encountered, there
may be some reduction in fill-in by selecting either IMSL_ROW MARKOWITZ or IMSL COLUMN MARKOWITZ.
The Markowitz strategy will search a pre-elected number of row or columns for pivot candidates. The default
number is three, but this can be changed by using IMSL NUM_OF SEARCH ROWS.

The option IMSL DROP_TOLERANCE can be used to set a tolerance which can reduce fill-in. This works by pre-
venting any new fill element which has magnitude less than the specified drop tolerance from being added to the
factorization. Since this can introduce substantial error into the factorization, it is recommended that

IMSL ITERATIVE REFINEMENT be used to recover more accuracy in the final solution. The trade-off is
between space savings from the drop tolerance and the extra time needed in repeated solve steps needed for
refinement.

The functionimsl f 1in sol gen coordinate provides the option of switching to a dense factorization
method at some point during the decomposition. This option is enabled by choosing

IMSL HYBRID FACTORIZATION. One of the two parameters required by this option, density, specifies a
minimum density for the active submatrix before a format switch will occur. A density of 1.0 indicates complete

= Rogygmq\{q lin_sol_gen_coordinate Chapter 1 Linear Systems

91

fill-in. The other parameter, order bound, places an upper bound on the order of the active submatrix which
will be converted to dense format. This is used to prevent a switch from occurring too early, possibly when the

0(n) nature of the dense factorization will cause performance degradation. Note that this option can significantly

increase heap storage requirements.

Examples

Example 1

As an example, consider the following matrix:

[10
0
0
-2
-1

-1

0 0
10 -3
0 15
0 0
0 0
-2 0

0 0 O
-1 0 O
0 0 O
10 -1 O
-5 1 -3
0 0 6

Let x" = (1,2, 3,4, 5, 6)sothat Ax = (10, 7, 45, 33, =34, 31). The number of nonzeros in Ais nz = 15.

#include <imsl.h>

int main ()

{

Imsl f sparse elem al]

{o, 0, 10.0,
1, 1, 10.0,
1, 2, -3.0,
1, 3, -1.0,
2, 2, 15.0,
3, 0, -2.0,
3, 3, 10.0,
3, 4, -1.0,
4, 0, -1.0,
4, 3, -5.0,
4, 4, 1.0,
4, 5, -3.0,
5, 0, -1.0,
5 1, -2.0,
5, 5, 6.0};

float b[] = {10.0 .0, 45.0, 33.

int n = 6;

int nz = 15;

float *x;

x = imsl f 1lin sol gen coordinate
0)s

0, -34.0, 31.0};

(n,

nz, a, b,

=RogueWave

lin_sol_gen_coordinate

Chapter 1 Linear Systems

92

imsl f write matrix ("solution", 1, n, x,
0);
imsl free (x);

}

Output
solution
1 2 3 4 5 6
1 2 3 4 5 6
Example 2

This examples sets A = E(1000, 10). A linear system is solved and the LU factorization returned. Then a second lin-
ear system is solved, using the same coefficient matrix A just factored. Maximum absolute errors and execution
time ratios are printed, showing that forward and back solves take approximately 10 percent of the computation
time of a factor and solve. This ratio can vary greatly, depending on the order of the coefficient matrix, the initial
number of nonzeros, and especially on the amount of fill-in produced during the elimination. Be aware that tim-
ing results are highly machine dependent.

#include <imsl.h>
#include <stdio.h>
#include <stdlib.h>

int main ()

{

Imsl f sparse elem *a;

Imsl f sparse lu factor lu factor;

float *b;

float *X;

float *mod_five;

float *mod_ten;

float error factor solve;
float error_ solve;
double time factor solve;
double time solve;

int n = 1000;

int c = 10;

int i;

int nz;

int index;

/* Get the coefficient matrix */
a = imsl f generate test coordinate (n, ¢, &nz, 0);

/* Set two different predetermined solutions */
mod five = (float*) malloc (n*sizeof (*mod five));

mod ten = (float*) malloc (n*sizeof (*mod ten));

for (1=0; i<n; 1i++) {

= R{nggmq\{q lin_sol_gen_coordinate Chapter 1 Linear Systems

93

mod five[i] = (float) (i1 % 5);
mod ten[i] = (float) (i % 10);

/* Choose b so that x will approximate mod five */
b = (float *) imsl f mat mul rect coordinate ("A*x",
IMSL A MATRIX, n, n, nz, a,
IMSL X VECTOR, n, mod five,
0);

/* Time the factor/solve */

time factor solve = imsl ctime();
x = imsl f lin sol gen coordinate (n, nz, a, b,
IMSL RETURN SPARSE LU FACTOR, &lu factor,
0);
time factor solve = imsl ctime() - time factor solve;

/* Compute max absolute error */

error_ factor solve = imsl f vector norm (n, X,
IMSL SECOND VECTOR, mod five,
IMSL INF NORM, &index,
0);

free (mod five);
imsl free (b);
imsl free (x);

/* Get new right hand side -- b = A * mod _ten */

b = (float *) imsl f mat mul rect coordinate ("A*x",
IMSL A MATRIX, n, n, nz, a,
IMSL X VECTOR, n, mod ten,
0);

/* Use the previously computed factorization
to solve Ax = b */
time solve = imsl ctime();

x = imsl f lin sol gen coordinate (n, nz, a, b,
IMSL SUPPLY SPARSE LU FACTOR, &lu factor,
IMSL SOLVE ONLY,

0);
time solve = imsl ctime() - time solve;
error solve = imsl f vector norm (n, X,

IMSL SECOND VECTOR, mod ten,
IMSL INF NORM, &index,
0);

= R{ng?mq\{q lin_sol_gen_coordinate Chapter 1 Linear Systems 94

free (mod ten);
imsl free (b);
imsl free (x);

/* Print errors and ratio of execution times */

printf ("absolute error (factor/solve) = %e\n",

error factor solve);
printf ("absolute error (solve) = %e\n", error solve);
printf ("time solve/time factor solve = %$f\n",

time solve/time factor solve);

}

Output
absolute error (factor/solve) = 9.179115e-05
absolute error (solve) = 2.160072e-04

time solve/time fator solve = 0.093750

Example 3

This example solves a system Ax = b, where A = £ (500, 50). Then, the same system is solved using a large drop tol-
erance. Finally, using the factorization just computed, the same linear system is solved with iterative refinement.
Be aware that timing results are highly machine dependent.

#include <imsl.h>
#include <stdio.h>
#include <stdlib.h>

int main()

{
Imsl f sparse elem *a;
Imsl f sparse lu factor lu factor;
float *b;
float *x;
float *mod five;
float error zero drop tol;
float error nonzero drop tol;
float error _nonzero drop tol IR;
double time zero drop tol;
double time nonzero drop tol;
double time nonzero drop tol IR;
int nz nonzero drop tol;
int nz zero drop tol;
int n = 500;
int c = 50;
int i;
int nz;
int index;

= R{ng?mq\{q lin_sol_gen_coordinate Chapter 1 Linear Systems 95

/* Get the coefficient matrix */
a = imsl f generate test coordinate (n, ¢, &nz, 0);
for (i=0; i<nz; i++) afi]l.val *= 0.05;

/* Set a predetermined solution */

mod five = (float*) malloc (n*sizeof (*mod five));
for (1i=0; i<n; i++)
mod five[i] = (float) (i % 5);

/* Choose b so that x will approximate mod five */
b = imsl f mat mul rect coordinate ("A*x",
IMSL A MATRIX, n, n, nz, a,
IMSL X VECTOR, n, mod five,
0)s

/* Time the factor/solve */

time zero drop tol = imsl ctime();
x = imsl f lin sol gen coordinate (n, nz, a, b,
IMSL NUM NONZEROS IN FACTOR, &nz zero drop tol,
0);
time zero drop tol = imsl ctime() - time zero drop tol;

/* Compute max abolute error */
error zero drop_ tol = imsl f vector norm (n, X,
IMSL SECOND VECTOR, mod five,
IMSL INF NORM, &index,
0);

imsl free (x);

/* Solve the same problem, with drop
tolerance = 0.005 */
time nonzero drop tol = imsl ctime();

x = imsl f lin sol gen coordinate (n, nz, a, b,
IMSL _RETURN SPARSE LU FACTOR, &lu factor,
IMSL DROP_TOLERANCE, 0.005,
IMSL NUM NONZEROS IN FACTOR, &nz nonzero_drop tol,
0);

time nonzero drop tol = imsl ctime() - time nonzero drop tol;

/* Compute max abolute error */

error nonzero drop tol = imsl f vector norm (n, x,
IMSL_SECOND VECTOR, mod five,
IMSL INF NORM, &index,
0);

imsl free (x);

= R{nggmq\{q lin_sol_gen_coordinate Chapter 1 Linear Systems

96

/* Solve the same problem with IR, use last
factorization */
time nonzero drop tol IR = imsl ctime();

x = imsl f lin sol gen coordinate (n, nz, a, b,
IMSL SUPPLY SPARSE LU FACTOR, &lu factor,
IMSL_SOLVE_ONLY,

IMSL ITERATIVE REFINEMENT,
0);

time nonzero drop tol IR = imsl ctime() - time nonzero drop tol IR;

/* Compute max abolute error */

error nonzero drop tol IR = imsl f vector norm (n, X,
IMSL SECOND VECTOR, mod five,
IMSL INF NORM, &index,
0);

imsl free (x);
imsl free (b);

/* Print errors and ratio of execution times */
printf ("drop tolerance = 0.0\n");

printf ("\tabsolute error = %e\n", error zero drop tol);

printf ("\tfillin = %d\n\n", nz zero drop tol);

printf ("drop tolerance = 0.005\n");

printf ("\tabsolute error = %e\n", error nonzero drop tol);

printf ("\tfillin = %d\n\n", nz nonzero drop tol);

printf ("drop tolerance = 0.005 (with IR)\n");

printf ("\tabsolute error = %e\n", error nonzero drop tol IR);

printf ("\tfillin = %d\n\n", nz nonzero drop tol);

printf ("time nonzero drop tol/time zero drop tol = %f\n",
time nonzero drop tol/time zero drop tol);

printf ("time nonzero drop tol IR/time zero drop tol = %$f\n",

time nonzero drop tol IR/time zero drop tol);

}

Output

drop tolerance = 0.0
absolute error = 3.814697e-06
fillin = 9530

drop tolerance = 0.005
absolute error = 2.699481e+00
fillin = 8656

drop tolerance = 0.005 (with IR)
absolute error = 1.907349%e-06
fillin = 8656

= R{ng?mq\{q lin_sol_gen_coordinate Chapter 1 Linear Systems 97

time nonzero drop tol/time zero drop tol = 1.086957
time nonzero drop tol IR/time zero drop tol = 0.840580

Notice the absolute error when iterative refinement is not used. Also note that iterative refinement itself can be
quite expensive. In this case, for example, the IR solve took approximately as much time as the factorization. For
this problem the use of a drop high drop tolerance and iterative refinement was able to reduce fill-in by 10 per-
cent at a time cost double that of the default usage. In tight memory situations, such a trade-off may be
acceptable. Users should be aware that a drop tolerance can be chosen large enough, introducing large errors
into LU, to prevent convergence of iterative refinement.

= ROQ}J?WH\{E: lin_sol_gen_coordinate Chapter 1 Linear Systems 98

in_sol_gen_coordinate (complex)

more. ..

Solves a system of linear equations Ax = b, with sparse complex coefficient matrix A. Using optional arguments,
any of several related computations can be performed. These extra tasks include returning the LU factorization of
A, computing the solution of Ax = b given an LU factorization, setting drop tolerances, and controlling iterative
refinement.

Synopsis
#include <ims1l.h>

fcomplex *imsl c 1lin sol gen coordinate (intn,intnz, Imsl_c_sparse_elem *a,
f.complex *b, ..., 0)

The type double functionis imsl z lin sol gen coordinate.

Required Arguments

intn (Input)
Number of rows in the matrix.

int nz (Input)
Number of nonzeros in the matrix.

Imsl_c_sparse_elem *a (Input)
Vector of length nz containing the location and value of each nonzero entry in the matrix.

f.complex *b (Input)
Vector of length n containing the right-hand side.

Return Value

A pointer to the solution x of the sparse linear system Ax = b. To release this space, use ims1 free. If no solu-
tion was computed, then NULL is returned.

Synopsis with Optional Arguments

#include <imsl.h>

= R{nggﬂg\{&: lin_sol_gen_coordinate (complex) Chapter 1 Linear Systems

99

fcomplex *ims1l c 1lin sol gen coordinate (intn,intnz, Imsl_c_sparse_elem *a,
f.complex *D,

IMSL RETURN SPARSE LU FACTOR,Imsl_c_sparse_lu_factor *1u factor,
IMSL SUPPLY SPARSE LU FACTOR,Imslc_sparse_lu_factor *1u factor,
IMSL _FREE SPARSE LU FACTOR

IMSL RETURN SPARSE LU IN COORD, /mslc_sparse_elem **1u coordinate,

int **row pivots,int**col pivots,

IMSL SUPPLY SPARSE LU IN COORD,intnzlu, Imsl_c_sparse_elem *1u coordinate,

int *row pivots,int *col pivots,
IMSL FACTOR ONLY,
IMSL SOLVE ONLY,
IMSL RETURN USER, f complex x[1],
IMSL TRANSPOSE,
IMSL CONDITION, float *condition,
IMSL PIVOTING STRATEGY, Ims/[_pivot method,
IMSL NUMBER OF SEARCH ROWS,intnum search row
IMSL ITERATIVE REFINEMENT,
IMSL_DROP_TOLERANCE,ﬂOGt tolerance,
IMSL HYBRID FACTORIZATION, float density, int orde r bound,
IMSL GROWTH FACTOR LIMIT, floatgf limit,
IMSL GROWTH FACTOR, float *gf,
IMSL SMALLEST PIVOT,float *small pivot
IMSL NUM NONZEROS IN FACTOR,int *num nonzeros,
IMSL CSC_FORMAT, int *col ptr,int *row_ind, f complex *values,
IMSL MEMORY BLOCK SIZE,intblock size,

0)

= R{ng?mq\{q lin_sol_gen_coordinate (complex) Chapter 1 Linear Systems 100

Optional Arguments

IMSL RETURN SPARSE LU FACTOR, Imslc_sparse_lu_factor *1u factor (Output)
The address of a structure of type Ims/_c_sparse_lu_factor. The pointers within the structure are ini-
tialized to point to the LU factorization by imsl ¢ 1in sol gen coordinate.

IMSL SUPPLY SPARSE LU FACTOR,Imslc_sparse_lu_factor *1u factor (Input)
The address of a structure of type Imsl_c_sparse_lu_factor. This structure contains the LU factorization
of the input matrix computed by ims1 ¢ 1in sol gen coordinate withthe
IMSL RETURN SPARSE LU FACTOR option.

IMSL FREE SPARSE LU FACTOR
Before returning, free the linked list data structure containing the LU factorization of A. Use this
option only if the factors are no longer required.

IMSL RETURN SPARSE LU IN COORD,/msl_c_sparse_elem **1u coordinate,
int **row pivots,int **col pivots (Output)
The LU factorization is returned in coordinate form in an array of length nz in 1u_coordinate.
This is more compact than the internal representation encapsulated in Imsl_c_sparse_lu_factor. The
disadvantage is that during a SOLVE_ONLY call, the internal representation of the factor must be
reconstructed. If however, the factor is to be stored after the program exits, and loaded again at
some subsequent run, the combination of IMSL._ RETURN LU IN COORD and
IMSL SUPPLY LU IN COORD s probably the best choice, since the factors are in a format that is
simple to store and read.

IMSL SUPPLY SPARSE LU IN COORD,intnzlu, Imsl_c_sparse_elem *1u coordinate,
int *row pivots,int *col pivots (Input)
Supply the LU factorization in coordinate form. See IMSL. RETURN SPARSE LU IN COORD fora
description.

IMSL FACTOR ONLY,
Compute the LU factorization of the input matrix and return. The argument b is ignored.

IMSL SOLVE ONLY,
Solve Ax = b given the LU factorization of A. This option requires the use of option
IMSL SUPPLY SPARSE LU FACTOR or IMSL SUPPLY SPARSE LU IN COORD

IMSL RETURN USER, f complex x[] (Output)
A user-allocated array of length n containing the solution x.

IMSL TRANSPOSE,

Solve the problem A'x = b. This option can be used in conjunction with either of the options that sup-
ply the factorization.

IMSL CONDITION, float *condition,
Estimate the L4 condition number of A and return in the variable condition.

= ROQEI?WH\{E: lin_sol_gen_coordinate (complex) Chapter 1 Linear Systems

101

IMSL PIVOTING STRATEGY, Imsl_pivot method (Input)
Select the pivoting strategy by setting method to one of the following: IMSL._ ROW MARKOWITZ,
IMSL COLUMN MARKOWITZ, or IMSL SYMMETRIC MARKOWITZ.
Default: IMSL SYMMETRIC MARKOWITZ.

IMSL NUMBER OF SEARCH ROWS,intnum search row (Input)
The number of rows which have the least number of nonzero elements that will be searched for a
pivot element.
Default: num_search row=3

IMSL ITERATIVE REFINEMENT,
Select this option if iterative refinement is desired.

IMSL DROP TOLERANCE, float tolerance (Input)
Possible fill-in is checked against tolerance. If the absolute value of the new element is less than toler-
ance, it will be discarded.
Default: tolerance =0.0

IMSL HYBRID FACTORIZATION, float density, int orde r bound, (Input)
Enable the code to switch to a dense factorization method when the density of the active submatrix
reaches 0.0 < density < 1.0 and the order of the active submatrix is less than or equal to

order bound.

IMSL _GROWTH FACTOR_LIMIT,floatgf limit (Input)
The computation stops if the growth factor exceeds gf limit.
Default: gf 1limit =1.e16

IMSL_GROWTH_FACTOR,f/OGt *gf (Output)
gf is calculated as the largest element in absolute value at any stage of the Gaussian elimination
divided by the largest element in absolute value in A.

IMSL SMALLEST PIVOT,float *small pivot (Output)
A pointer to the value of the pivot element of smallest magnitude.

IMSL NUM NONZEROS IN FACTOR,int *num nonzeros (Output)
A pointer to a scalar containing the total number of nonzeros in the factor.

IMSL CSC_FORMAT,int *col ptr,int*row ind, f complex *values (Input)
Accept the coefficient matrix in Compressed Sparse Column (CSC) Format. See the main Introduction
chapter at the beginning of this manual for a discussion of this storage scheme.

IMSL MEMORY BLOCK SIZE, intblocksize (Input)
If space must be allocated for fill-in, allocate enough space for blocksize new nonzero elements.
Default: blocksize =nz

= Rogygmq\{q lin_sol_gen_coordinate (complex) Chapter 1 Linear Systems 102

Description

The function ims1 ¢ 1lin sol gen coordinate solves a system of linear equations Ax = b, where Ais
sparse. In its default use, it solves the so-called one off problem, by first performing an LU factorization of A using
the improved generalized symmetric Markowitz pivoting scheme. The factor L is not stored explicitly because the
saxpy operations performed during the elimination are extended to the right-hand side, along with any row
interchanges. Thus, the system Ly = b is solved implicitly. The factor U is then passed to a triangular solver which
computes the solution x from Ux = y.

If a sequence of systems Ax = b are to be solved where A is unchanged, it is usually more efficient to compute the
factorization once, and perform multiple forward and back solves with the various right-hand sides. In this case
the factor L is explicitly stored and a record of all row as well as column interchanges is made. The solve step then
solves the two triangular systems Ly = b and Ux = y. The user specifies either the

IMSL RETURN SPARSE LU FACTORor the IMSL RETURN LU IN COORD option to retrieve the factor-
ization, then calls the function subsequently with different right-hand sides, passing the factorization back in
using either IMSL,_SUPPLY SPARSE LU FACTOR or IMSL SUPPLY SPARSE LU IN COORD in conjunc-
tion with IMSL_SOLVE_ONLY. If IMSL RETURN SPARSE LU FACTORis used, the final call to

imsl lin sol gen coordinate shouldinclude IMSL FREE SPARSE LU FACTOR to release the
heap used to store L and U.

If the solution to A'x = b is required, specify the option IMSL TRANSPOSE. This keyword only alters the forward
elimination and back substitution so that the operations U'y = b and L"x = y are performed to obtain the solution.

So, with one call to produce the factorization, solutions to both Ax = b and A'x = b can be obtained.

The option IMSL_CONDITION is used to calculate and return an estimation of the L, condition number of A.

The algorithm used is due to Higham. Specification of IMSL._ CONDITION causes a complete L to be computed
and stored, even if a one off problem is being solved. This is due to the fact that Higham's method requires solu-

tion to problems of the form Az=rand A'z=r.

The default pivoting strategy is symmetric Markowitz. If a row or column oriented problem is encountered, there
may be some reduction in fill-in by selecting either IMSL_ROW MARKOWITZ or IMSL COLUMN MARKOWITZ.
The Markowitz strategy will search a pre-elected number of row or columns for pivot candidates. The default
number is three, but this can be changed by using IMSL NUM_OF SEARCH ROWS.

The option IMSL DROP_TOLERANCE can be used to set a tolerance which can reduce fill-in. This works by pre-
venting any new fill element which has magnitude less than the specified drop tolerance from being added to the
factorization. Since this can introduce substantial error into the factorization, it is recommended that

IMSL ITERATIVE REFINEMENT be used to recover more accuracy in the final solution. The trade-off is
between space savings from the drop tolerance and the extra time needed in repeated solve steps needed for
refinement.

The functionimsl c lin sol gen coordinate provides the option of switching to a dense factorization
method at some point during the decomposition. This option is enabled by choosing

IMSL HYBRID FACTORIZATION. One of the two parameters required by this option, density, specifies a
minimum density for the active submatrix before a format switch will occur. A density of 1.0 indicates complete

= ROQEI?WH\{E: lin_sol_gen_coordinate (complex) Chapter 1 Linear Systems 103

fill-in. The other parameter, order bound, places an upper bound on the order of the active submatrix which

will be converted to dense format. This is used to prevent a switch from occurring too early, possibly when the

0(n) nature of the dense factorization will cause performance degradation. Note that this option can significantly

increase heap storage requirements.

Examples

Example 1

As an example, consider the following matrix:

[10+ 7i 0
0 3+2i
B 0 0
4= -2 —4 0
—5+4i 0
| —1+12i —2+8i

0
-3
442j
0
0
0

0
—1+2i
0
1+6i
=5
0

0

0

0
—-1+3i
12+ 2i

0

0
0
0
0

-7+7i
3+7i |

Let

so that

xV=(1+i,2+2i,3+3i,4+4i,5 +5i,6 + 6

Ax= B3+ 17i,-19 + 5i,6 + 18i, - 38 + 32i, -63 + 49i, -57 + 83/’)T

#include <imsl.h>

int main ()

{

static Imsl c sparse elem a[] =

{0,

~ N~ N~ ~ ~ ~ N~ N~ ~

~

~

o O DD wwwbdNdREP R

~

0,

~ N~ N~ ~ ~ ~ N~ N~ ~

~

~

R O Uk WOk wodhwdNH

~

{10.0,
{3.0,
{-3.0,
{-1.0,
{4.0,
{-2.0,
{1.0,
{-1.0,
{-5.0
{-5.0
{12.0
{-7.0
{-1.0
{-2.0
{3.0,

14

7.0},
2.0},

0.0},
2.0},
2.0},

-4.0},
6.0},

3.0},
4.0},
0.0},
2.0},
7.0},
12.0},
8.0},
7.0} };

static £ complex b[] =

{{3.0,

{-38.0,

17.0},

32.0},

{-19.0,

{-63.0,

5.0},

49.0},

{6.0,

{-57.0,

18.0},
83.0}11}7

=RogueWave

lin_sol_gen_coordinate (complex)

Chapter 1 Linear Systems

104

int n = 6;
int nz = 15;
f complex *x;

x = imsl c lin sol gen coordinate (n, nz, a, b,
0);

imsl ¢ write matrix ("solution", n, 1, X,
0);

imsl free (x);

}
Output
solution

1,

14

~

o U W DN
oY U b W DN
~

~

~
o U W N

Example 2

This example sets A = E (1000, 10). A linear system is solved and the LU factorization returned. Then a second lin-
ear system is solved using the same coefficient matrix A just factored. Maximum absolute errors and execution
time ratios are printed showing that forward and back solves take a small percentage of the computation time of
a factor and solve. This ratio can vary greatly, depending on the order of the coefficient matrix, the initial number
of nonzeros, and especially on the amount of fill-in produced during the elimination. Be aware that timing results
are highly machine dependent.

#include <imsl.h>
#include <stdio.h>
#include <stdlib.h>

int main ()

{

Imsl c sparse elem *aj;

Imsl c sparse lu factor lu factor;

f complex *b, *x, *mod five, *mod ten;
float error factor solve, error solve;
double time factor solve, time solve;
int n = 1000, ¢ = 10, i, nz, index;

/* Get the coefficient matrix */
a = imsl c generate test coordinate (n, c, &nz, 0);

/* Set two different predetermined solutions */
mod five = (f complex*) malloc (n*sizeof (*mod five));
mod _ten = (f complex*) malloc (n*sizeof (*mod ten));

= ROQEJ?\MQ\{E: lin_sol_gen_coordinate (complex) Chapter 1 Linear Systems

105

for (i=0; i<n; i++) {
mod five[i] = imsl cf convert ((float) (i % 5), 0.0);
mod ten[i] = imsl cf convert ((float) (i % 10), 0.0);

/* Choose b so that x will approximate mod five */
b = imsl ¢ mat mul rect coordinate ("A*x",
IMSL A MATRIX, n, n, nz, a,
IMSL X VECTOR, n, mod five,
0);

/* Time the factor/solve */

time factor solve = imsl ctime();
x = imsl ¢ lin sol gen coordinate (n, nz, a, b,
IMSL RETURN SPARSE LU FACTOR, &lu factor,
0);
time factor solve = imsl ctime() - time factor solve;

/* Compute max abolute error */

error factor solve = imsl ¢ vector norm (n, X,
IMSL SECOND VECTOR, mod five,
IMSL INF NORM, &index,
0)7;

imsl free (b);
imsl free (x);

/* Get new right hand side -- b = A * mod ten */
b = imsl ¢ mat mul rect coordinate ("A*x",
IMSL A MATRIX, n, n, nz, a,
IMSL X VECTOR, n, mod ten,
0);

/* Use the previously computed factorization to solve Ax = b */
time solve = imsl ctime();

x = imsl ¢ lin sol gen coordinate (n, nz, a, b,
IMSL SUPPLY SPARSE LU FACTOR, &lu factor,
IMSL SOLVE ONLY,

0);
time solve = imsl ctime() - time solve;
error solve = imsl ¢ vector norm (n, X,

IMSL SECOND VECTOR, mod ten,
IMSL INF NORM, &index,
0);

= R{ng?mq\{q lin_sol_gen_coordinate (complex) Chapter 1 Linear Systems 106

imsl free (b);
imsl free (x);

/* Print errors and ratio of execution times */

printf ("absolute error (factor/solve) = %e\n",

error factor solve);
printf ("absolute error (solve) = %e\n", error_solve);
printf ("time solve/time factor solve = $f\n",

time solve/time factor solve);

}

Output
absolute error (factor/solve) = 2.389053e-06
absolute error (solve) = 7.656095e-06

time solve/time factor solve 0.070313

= Rogygmq\{q lin_sol_gen_coordinate (complex) Chapter 1 Linear Systems 107

superlu

more. ..

Computes the LU factorization of a general sparse matrix by a column method and solves the real sparse linear
system of equations Ax=5b.

Synopsis
#include <ims1.h>
float *ims1l £ superlu(intn,int nz, Imslf sparse_elem a[],floatb[], .., 0)
void imsl f superlu factor free (Imslfsuper_lu_factor *factor)

The type double functions are ims1 d superluand imsl d superlu factor free.

Required Arguments

int n (Input)
The order of the input matrix.

int nz (Input)
Number of nonzeros in the matrix.

Imsl_f sparse_elem a [1 (Input)
Array of length nz containing the location and value of each nonzero entry in the matrix. See the
explanation of the Ims/_f_sparse_elem structure in the section Matrix Storage Modes in the “Introduc-
tion” chapter of this manual.

floatb[] (Input)
Array of length n containing the right-hand side.

Return Value

A pointer to the solution x of the sparse linear system Ax = b . To release this space, use ims1 free.Ifno
solution was computed, then NULL is returned.

Synopsis with Optional Arguments

#include <imsl.h>

= R{ng?mq\{q superlu Chapter 1 Linear Systems 108

float *ims1 f superlu (intn,intnz, Imslf sparse_elem a[],floatb[],
IMSL EQUILIBRATE,intequilibrate,
IMSL COLUMN ORDERING METHOD, Imsl_col ordering method,
IMSL COLPERM VECTOR, intpermc|],
IMSL TRANSPOSE, int transpose,
IMSL ITERATIVE REFINEMENT,intrefine,
IMSL FACTOR_SOLVE,int factsol,
IMSL DIAG PIVOT THRESH, doublediag pivot thresh,
IMSL SYMMETRIC MODE, int symm mode,
IMSL PERFORMANCE TUNING,intsp ienv[],
IMSL CSC_FORMAT, intHB col ptr[],intHB row ind[], float HB values|[],
IMSL CSC_FORMAT, intHB col ptr[],intHB row ind[], float HB values|[],
IMSL SUPPLY SPARSE LU FACTOR, Imslf super_lu_factor lu factor supplied,
IMSL RETURN SPARSE LU FACTOR, Imslf super_lu_factor *1u factor returned,
IMSL CONDITION, float *condition,
IMSL PIVOT GROWTH FACTOR, float *recip pivot growth,
IMSL FORWARD ERROR_ BOUND, float * ferr,
IMSL BACKWARD_ ERROR, float *berr,
IMSL RETURN USER, floatx[],

0)

Optional Arguments

IMSL EQUILIBRATE, intequilibrate (Input)
Specifies if the input matrix A should be equilibrated before factorization.

equilibrate Description
0 Do not equilibrate A before factorization
1 Equilibrate A before factorization.

Default: equilibrate =0

= R{ng?mq\{q superlu Chapter 1 Linear Systems 109

IMSL COLUMN ORDERING METHOD, Imsl_col ordering method (Input)

The column ordering method used to preserve sparsity prior to the factorization process. Select the

ordering method by setting method to one of the following:

method

Description

IMSL NATURAL

Natural ordering, i.e.the column ordering of the input
matrix.

IMSL MMD ATA

Minimum degree ordering on the structure of 474 .

IMSL_MMD AT PLUS A

Minimum degree ordering on the structure of

AT+ 4.

IMSL COLAMD

Column approximate minimum degree ordering.

IMSL PERMC

Use ordering given in permutation vector permc,
which is input by the user through optional argument
IMSL_COLPERM VECTOR. Vector permc is a permu-
tation of the numbers 0,1,..n-1.

Default: method = IMSL._ COLAMD

IMSL COLPERM VECTOR,intpermc[] (Input)

Array of length n which defines the permutation matrix P. before postordering. This argument is
required if IMSL COLUMN ORDERING METHOD withmethod = IMSL PERMC is used. Other-

wise, it is ignored.

IMSL TRANSPOSE, int transpose (Input)

Indicates if the transposed problem A”x = p is to be solved. This option can be used in conjunction

with either of the options that supply the factorization.

transpose |Description
0 Solve Ax =b.
1 Solve ATx =b.

Default: transpose =0

IMSL ITERATIVE REFINEMENT, intrefine (Input)
Indicates if iterative refinement is desired.

refine

Description

No iterative refinement.

Do iterative refinement.

=RogueWave

superlu Chapter 1 Linear Systems

110

Default: refine =1

IMSL FACTOR_SOLVE, int factsol (Input)
Indicates if the LU factorization, the solution of a linear system or both are to be computed.

factsol Description

0 Compute the LU factorization of the input matrix A
and solve the system Ax =5b.

1 Only compute the LU factorization of the input matrix
and return.

The LU factorization is returned via optional argument
IMSL RETURN SPARSE LU FACTOR.
Input argument b is ignored.

2 Only solve 4x = b given the LU factorization of A .

The LU factorization of 4 must be supplied via
optional argument

IMSL SUPPLY SPARSE LU FACTOR.

Input argument a is ignored unless iterative refine-
ment, computation of the condition number or
computation of the reciprocal pivot growth factor is
required.

Default: factsol =0

IMSL DIAG PIVOT THRESH, double diag pivot thresh (Input)
Specifies the threshold used for a diagonal entry to be an acceptable pivot,
00<diag pivot thresh <1.0.

Default: diag_pivot thresh=1.0

IMSL SYMMETRIC MODE, int symm mode (Input)
Indicates if the symmetric mode option is to be used. This mode should be applied if the input matrix
A is diagonally dominant or nearly so. The user should then define a small diagonal pivot threshold
(e.g.0.0 or 0.01) via option IMSL_DIAG PIVOT THRESH and choose an (AT+A)-based column
permutation algorithm (e.g. column permutation method IMSL MMD AT PLUS A).

symm_mode |Description

0 Do not use symmetric mode option.

1 Use symmetric mode option.

Default: symm mode =0

= R{nggmq\{e: superlu Chapter 1 Linear Systems 111

IMSL PERFORMANCE TUNING, intsp ienv[] (Input)
Array of length 6 containing positive parameters that allow the user to tune the performance of the
matrix factorization algorithm.

i Description of sp_ienv[i]

0 The panel size.
Default: sp_ienv[0] = 10

1 The relaxation parameter to control supernode amalgama-
tion.

Default: sp_ienv[1l] = 5

2 The maximum allowable size for a supernode.
Default: sp_ienv[2] = 100

3 The minimum row dimension to be used for 2D blocking.
Default: sp_ienv[3] = 200

4 The minimum column dimension to be used for 2D blocking.
Default: sp_ienv[4] = 40

5 The estimated fill factor for L and U, compared to A.
Default: sp_ienv[5] = 20

IMSL CSC FORMAT, intHB col ptr[],intHB row ind[] , float HB values[] (Input)
Accept the coefficient matrix in Compressed Sparse Column (CSC) Format in the Introduction chapter
of this manual for a discussion of this storage scheme.

IMSL SUPPLY SPARSE LU FACTOR, Imslf super_lu_factor 1u_factor supplied (Input)
A structure of type Imsl_f super_lu_factor containing the LU factorization of the input matrix com-
puted with the IMSL RETURN_ SPARSE LU FACTOR option. See the Description section for a
definition of this structure. To free the memory allocated within this structure, use function
imsl_f_superlu_factor_free.

IMSL RETURN SPARSE LU FACTOR, Imslf super_lu_factor *1u factor returned (Output)
The address of a structure of type Imsl_f super_lu_factor containing the LU factorization of the input
matrix. See the Description section for a definition of this structure. To free the memory allocated
within this structure, use function imsl_f_superlu_factor_free.

IMSL CONDITION, float *condition (Output)
The estimate of the reciprocal condition number of matrix a after equilibration (if done).

IMSL PIVOT GROWTH FACTOR, float *recip pivot growth (Output)
The reciprocal pivot growth factor

m}n§ |(PD,ADP.) |/ HUJHOO}

If recip pivot growth is much less than 1, the stability of the LU factorization could be poor.

= R{nggmq\{q superlu Chapter 1 Linear Systems 112

IMSL FORWARD ERROR_BOUND, float *ferr (Output)
The estimated forward error bound for the solution vector x. This option requires argument
IMSL ITERATIVE REFINEMENT setto 1.

IMSL BACKWARD ERROR, float *berr (Output)
The componentwise relative backward error of the solution vector x. This option requires argument
IMSL ITERATIVE REFINEMENT setto 1.

IMSL RETURN USER,floatx[] (Output)
A user-allocated array of length n containing the solution x of the linear system.

Description

Consider the sparse linear system of equations

Ax=b

Here, A isageneral square, nonsingular u by n sparse matrix, and x and b are vectors of length #n . All entries
in A, x and p are of real type.

Gaussian elimination, applied to the system above, can be shortly described as follows:

1. Compute a triangular factorization P.D,AD P.= LU . Here, D, and D, are positive definite diagonal
matrices to equilibrate the system and P, and P, are permutation matrices to ensure numerical stability
and preserve sparsity. L is a unit lower triangular matrix and U is an upper triangular matrix.

2. Solve Ax = b by evaluating

v =0 (17 (B (D))

This is done efficiently by multiplying from right to left in the last expression: Scale the rows of p by D,.
Multiplying Pr<Drb> means permuting the rows of D,b .

Multiplying L' <Pr'Drb> means solving the triangular system of equations with matrix [by substitution.
Similarly, multiplying Uﬂ([l <PrDrb> > means solving the triangular system with U .

Function ims1 f_superlu handlesstep 1 above by default or if optional argument IMSL FACTOR_ SOLVE is
used and set to 1. More precisely, before 4x = b is solved, the following steps are performed:

1. Equilibrate matrix A, i.e. compute diagonal matrices D, and D, sothat 4 = D,AD, is "better condi-

A—1 A
tioned” than A4,i.e. 4 s less sensitive to perturbationsin 4 than 4! is to perturbationsin A .

2. Order the columns of ,21 to increase the sparsity of the computed [and U factors, i.e. replace ,21 by

AP, where P, is a column permutation matrix.

= Rogygmq\{q superlu Chapter 1 Linear Systems

113

3.

5.

Compute the LU factorization of AP, . For numerical stability, the rows of 4P, are eventually permuted
through the factorization process by scaled partial pivoting, leading to the decomposition

A= P.AP.= LU . The LU factorization is done by a left looking supernode-panel algorithm with 2-D
blocking. See Demmel, Eisenstat, Gilbert et al. (1999) for further information on this technigue.

Compute the reciprocal pivot growth factor

i,
1<j<n || Ul ,

where ;Ij and U; denote the j-th column of matrices A and U, respectively.

Estimate the reciprocal of the condition number of matrix A.

During the solution process, this information is used to perform the following steps:

1.
2.

3.

Solve the system Ax = b using the computed triangular L and U factors.

lteratively refine the solution, again using the computed triangular factors. This is equivalent to Newton's
method.

Compute forward and backward error bounds for the solution vector x .

Some of the steps mentioned above are optional. Their settings can be controlled by the appropriate optional

arguments of function ims1 f superlu.

Function ims1l f superlu uses a supernodal storage scheme for the LU factorization of matrix A. The factor-
ization is contained in structure Imsl_f super_lu_factor and two sub-structures. Following is a short description of

these structures:

typedef struct{
int nnz;
float *nzval;

int *rowind;
int *colptr;

} Imsl £ hb format;

typedef struct{
int nnz;

int nsuper;
float *nzval;

int *nzval colptr;

/* Number of nonzeros in the matrix */
/* Array of nonzero values packed by column
*/

/* Array of row indices of the nonzeros */

/* colptr[j] stores the location in nzval][]
and rowind[] which starts column j. It
has ncol+l entries, and colptr[ncol]
points to the first free location in
arrays nzval[] and rowind[]. */

/* Number of nonzeros in the supernodal
matrix */

/* Index of the last supernode */

/* Array of nonzero values packed by column

*/

/* Array of length ncol+1; nzval colptr[j]
stores the location in nzval which starts
column j. nzval colptr[ncol] points to
the first free location in arrays

=RogueWave

superlu Chapter 1 Linear Systems

114

int

int

int

int

*rowind;

*rowind colptr;

*col to sup;

*sup to col;

} Imsl £ sc format;

typedef struct{
int nrow;
int ncol;

int equilibration method;

float *rowscale;

float *columnscale;

int

int

Imsl f hb format *U;

Imsl f sc format *L;

} Imsl f super lu factor;

*rowperm;

*colperm;

/*

/*

/*

/*

/*
/*

nzval[] and nzval colptr[]. */

Array of compressed row indices of
rectangular supernodes */

Array of length ncol+l;
rowind colptr[sup to coll[s]] stores the
location in rowind[] which starts
all columns in supernode s, and
rowind colptr[ncol] points to the first
free location in rowind[]. */

Array of length ncol+l; col to sup[j] is
the supernode number to which column j
belongs. Only the first ncol entries in
col to sup[] are defined. */

Array of length ncol+l; sup to col[s]
points to the starting column of the s-th
supernode. Only the first nsuper+2
entries in sup to col[] are defined, and
sup_to col[nsuper+l] = ncol+l. */

number of rows of matrix A */
number of columns of matrix A */

/* The method used to equilibrate A:

/*

/*

/*

/*

/*

/*

0 - No equilibration
1 - Row equilibration.
2 — Column equilibration
3 - Both row and column equilibration */
Array of length nrow containing the row
scale factors for A */
Array of length ncol containing the
column scale factors for A */
Row permutation array of length nrow
describing the row permutation matrix Pr

*/

Column permutation array of length ncol
describing the column permutation matrix
Pc */

The part of the U factor of A outside the
supernodal blocks, stored in Harwell-
Boeing format */

The L factor of A, stored in supernodal
format as block lower triangular matrix

*/

Structure Imsl_d_super_lu_factor and its two sub-structures are defined similarly by replacing float by double,
Imsl_f_hb_format by Imsl_d_hb_format and Ims/_f sc_format by Ims/_d_sc_format in their definitions.

=RogueWave

superlu Chapter 1 Linear Systems

115

For a definition of supernodes and its use in sparse LU factorization, see the SuperLU Users' guide (1999) and J.W.
Demmel, S. C. Eisenstat et al. (1999).

As an example, consider the matrix

19 0 21 21 O
1221 0 0 O
A=(0 12 16 0 O
0 0 0 5 21
12 12 0 0 18

taken from the SuperlLU Users' guide (1999).

Factorization of this matrix via ims1 £ superlu using natural column ordering, no equilibration and setting
sp_ienv([1]from its default value 5 to 1 results in the following LU decomposition:

A=LU =
1.00 19.00 21.00 21.00
0.63 1.00 21.00 —13.26 —13.26
0.57 1.00 23.58 7.58
1.00 5.00 21.00
0.63 0.57 —-0.24 —-0.77 1.00 34.20
Considering the filled matrix F (/ denoting the identity matrix)

19.00 21.00 21.00
0.63 21.00 —13.26 —13.26
F=L+U—-I= 0.57 2358 7.58
5.00 21.00

0.63 057 -024 -0.77 34.20

the supernodal structure of the factors of matrix A can be described by

Sl T/I3 1/[4
S1 S Sy Uy
SZ SZ 1/[4
S3 83
S1 S2 S22 8383

where §;denotes a nonzero entry in the jth supernode and u; denotes a nonzero entry in the jth column of U
outside the supernodal block.

= Rogygmq\{q superlu Chapter 1 Linear Systems

116

Therefore, in a supernodal storage scheme the supernodal part of matrix F is stored as the lower block-diagonal
matrix

19.00
0.63 21.00 —13.26

L 0.57 23.58

snode —

5.00 21.00
0.63 0.57 -0.24 -077 34.20

and the part outside the supernodes as the upper triangular matrix

* 21.00 21.00
* —13.26

snode — * 7.58
*

This is in accordance with the output for structure Imsl_f super_lu_factor:

Equilibration method: 0

Scale vectors:
rowscale: 1.000000

columnscale:

Permutation vectors:

colperm:
rowperm:

012 34
012 3 4

1.000000 1.000000 1.000000 1.000000

1.000000 1.000000 1.000000 1.000000 1.000000

Harwell-Boeing matrix U:
nrow 5,

nzval:

rowind:
colptr:

ncol 5,
21.000000 -13.263157 7.578947 21.000000

0120
000144

Supernodal matrix L:

ncol 5,

.900000e+001
.315789e-001
.315789%e-001
.100000e+001
.714286e-001
5.

714286e-001

-1.326316e+001

2.

357895e+001

-2.410714e-001

5.

000000e+000

-7.714285e-001

2.

nrow 5,
nzval:
0O 0 1
1 0 o
4 0 o
1 1 2
2 1 5
4 1

1 2

2 2

4 2

3 3

4 3

3 4

4 4

3.

100000e+001
420000e+001

nnz 11

nnz 11, nsuper 2

=RogueWave

superlu

Chapter 1 Linear Systems

117

nzval colptr: 0 3 6 9 11 13
rowind: 0 1 41 2 4 3 4

rowind colptr: 0 3 6 6 8 8

col to sup: O 2
0

112
sup_to col: 135
Function ims1 f superluis based on the SuperLU code written by Demmel, Gilbert, Li et al. For more
detailed explanations of the factorization and solve steps, see the SuperLU User's Guide (1999).

Copyright (c) 2003, The Regents of the University of California, through Lawrence Berkeley National Laboratory
(subject to receipt of any required approvals from U.S. Dept. of Energy)

All rights reserved.

Redistribution and use in source and binary forms, with or without modification, are permitted provided that the
following conditions are met:

(1) Redistributions of source code must retain the above copyright notice, this list of conditions and the following
disclaimer.

(2) Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the fol-
lowing disclaimer in the documentation and/or other materials provided with the distribution.

(3) Neither the name of Lawrence Berkeley National Laboratory, U.S. Dept. of Energy nor the names of its contrib-
utors may be used to endorse or promote products derived from this software without specific prior written
permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS “AS IS" AND ANY EXPRESS OR
IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND
FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CON-
TRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF
USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY
WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

Examples

Example 1

The LU factorization of the sparse 6x6 matrix

= Rogygmq\{q superlu Chapter 1 Linear Systems 118

(10 0 0 0 O
0 10 -3 -1 0
0 0 15 0 0
-2 0 0 10 -1
-1 0 0 -5 1 -3
-1 =2 0 0 0 6|

SO OO

is computed.
Lety =(1,2,3,4,5,6), sothat by: = Ay = (10,7, 45,33, -34,31) and by: = ATy = (-9, 8, 39,13, 1,217

The LU factorization of A is used to solve the sparse linear systems Ax = b; and A'x = b,.

#include <imsl.h>

int main() {
Imsl f sparse elem afl]

Il
—_~
~

=
(@]

~
~

~
=
(@]

~
~

~
~

|
w
o e
~

~
~
|
=
.
~

~

~
=
)]

~

~

~
=
(@]

~
~

~

~
~
|
=
.
~

~
|
N

O O O O OO OO oo
~

~
~
|
w
~

~
=
QO .
~

~

~
|
W
(@)
~

~

~
|
=
(@]
~

~

~ 0~
o |
N
O .
- O
~e N

~

O oo DD wWwwwNhEFE PP O
~

O R O Ul WO dbdhwoNWwNDEO
~
|
'_\

~

float b1[] = {10.0, 7.0, 45.0, 33.0, -34.0, 31.0};

float b2[] = { -9.0, 8.0, 39.0, 13.0, 1.0, 21.0 };

int n = 6, nz = 15;

float *x = NULL;

x = imsl f superlu (n, nz, a, bl, 0);

imsl f write matrix ("solution to A*x = bl", 1, n, x, 0);

imsl free (x);

x = imsl f superlu (n, nz, a, b2, IMSL TRANSPOSE, 1, 0);
imsl f write matrix ("solution to A"T*x = b2", 1, n, x, 0);
imsl free (x);

}
Output

solution to A*x = b
1 2 3 4 5 6

= Rogygmq\{q superlu Chapter 1 Linear Systems 119

solution to A"T*x = b2
1 2 3 4 5 6
1 2 3 4 5 6

Example 2

This example uses the matrix A = E(1000,10) to show how the LU factorization of A can be used to solve a linear
system with the same coefficient matrix A but different right-hand side. Maximum absolute errors are printed
After the computations, the space allocated for the LU factorization is freed via function

imsl f superlu factor free.

#include <imsl.h>
int main () {

Imsl f sparse elem *a;

Imsl f super lu factor lu factor;
float *b, *x, *mod five, *mod ten;
float error factor solve, error solve;
int n = 1000, ¢ = 10;

int i, nz, index;

/* Get the coefficient matrix */
a = imsl f generate test coordinate (n, ¢, &nz, 0);

/* Set two different predetermined solutions */

mod five = (float*) malloc (n*sizeof (*mod five));
mod ten = (float*) malloc (n*sizeof (*mod ten));
for (i=0; i<n; i++) {

mod five[i] = (float) (1 % 5);

mod ten[i] = (float) (i % 10);

}

/* Choose b so that x will approximate mod five */
b = imsl f mat mul rect coordinate ("A*x",
IMSL A MATRIX, n, n, nz, a,
IMSL X VECTOR, n, mod five, 0);

/* Solve Ax = Db */
x = imsl f superlu (n, nz, a, b,
IMSL RETURN SPARSE LU FACTOR, &lu factor, 0);

/* Compute max absolute error */

error factor solve = imsl f vector norm (n, X,
IMSL SECOND VECTOR, mod five,
IMSL INF NORM, &index,
0);

= R{nggmq\{q superlu Chapter 1 Linear Systems

120

imsl free (mod five);
imsl free (b);
imsl free (x);

/* Get new right hand side -- b = A * mod ten */
b = imsl f mat mul rect coordinate ("A*x",
IMSL A MATRIX, n, n, nz, a,
IMSL X VECTOR, n, mod ten,
0);

/* Use the previously computed factorization
to solve Ax = b */

x = imsl f superlu (n, nz, a, b,
IMSL SUPPLY SPARSE LU FACTOR, lu factor,
IMSL FACTOR SOLVE, 2,
0);

error solve = imsl f vector norm (n, X,
IMSL SECOND VECTOR, mod ten,
IMSL INF NORM, &index,
0);

imsl free
imsl free
imsl free
imsl free

mod_ten);

(
(b);
(x);
(a);

/* Free sparse LU structure */
imsl f superlu factor free (&lu factor);

/* Print errors */

printf ("absolute error (factor/solve) = %e\n",
error factor solve);
printf ("absolute error (solve) = %e\n", error_solve);
1
Output
absolute error (factor/solve) = 1.502037e-005
absolute error (solve) = 1.621246e-005

= R{nggmq\{q superlu Chapter 1 Linear Systems 121

Warning Errors

IMSL ILL CONDITIONED The input matrix is too ill-conditioned. An estimate of
the reciprocal of its Ly condition number is
“rcond” = #.

The solution might not be accurate.

Fatal Errors

IMSL SINGULAR MATRIX The input matrix is singular.

= Rogygmg\ﬁ superlu Chapter 1 Linear Systems 122

superlu (complex)

more. ..

Computes the LU factorization of a general complex sparse matrix by a column method and solves the complex
sparse linear system of equations Ax = b .

Synopsis
#include <ims1.h>
fcomplex *ims1l c_superlu(intn,intnz, Imsl_c_sparse_elem a[],f complexb[], .., 0)
void imsl c superlu factor free (Imsl_c_super_lu_factor *factor)

The type double functions are ims1 z superluand imsl z superlu factor free.

Required Arguments

int n (Input)
The order of the input matrix.

intnz (Input)
Number of nonzeros in the matrix.

Imsl_c_sparse_elem a [] (Input)
Array of length nz containing the location and value of each nonzero entry in the matrix. See the
explanation of the Ims/_c_sparse_elem structure in the section Matrix Storage Modes in the “Introduc-
tion” chapter of this manual.

f.complex b [] (Input)
Array of length n containing the right-hand side.

Return Value

A pointer to the solution x of the sparse linear system Ax = b . To release this space, use ims1 free.Ifno
solution was computed, then NULL is returned.

Synopsis with Optional Arguments

#include <ims1.h>

= R{ng?mq\{q superlu (complex) Chapter 1 Linear Systems 123

f.complex *imsl c superlu (intn,intnz, Imsl_c_sparse_elemal[],f complexb[],
IMSL EQUILIBRATE, intequilibrate,
IMSL COLUMN ORDERING METHOD, Imsl_col ordering method,
IMSL COLPERM VECTOR, intpermc (],
IMSL TRANSPOSE, int transpose,
IMSL ITERATIVE REFINEMENT, int refine,
IMSL FACTOR SOLVE, int factsol,
IMSL DIAG PIVOT THRESH, double diag pivot thresh,
IMSL SYMMETRIC MODE, int symm mode,
IMSL PERFORMANCE TUNING, int sp_ienv[],
IMSL CSC FORMAT, intHB col ptr[],intHB row ind[],fcomplex HB values[],
IMSL SUPPLY SPARSE LU FACTOR, Imsl_c_super_lu_factor lu_factor supplied,
IMSL RETURN SPARSE LU FACTOR, Imsl_c_super_lu_factor *1u_factor returned,
IMSL CONDITION, float *condition,
IMSL PIVOT GROWTH FACTOR, float *recip pivot growth,
IMSL FORWARD ERROR BOUND, float *ferr,
IMSL BACKWARD ERROR, float *berr,
IMSL RETURN USER, f complex x[],

0)

Optional Arguments

IMSL EQUILIBRATE, intequilibrate (Inputs)
Specifies if the input matrix A should be equilibrated before factorization.

equilibrate |Description

0 Do not equilibrate A before factorization

1 Equilibrate A before factorization.

Default: equilibrate =0

= R{nggmq\{q superlu (complex) Chapter 1 Linear Systems 124

IMSL COLUMN ORDERING METHOD, Imsl_col ordering method (Input)

The column ordering method used to preserve sparsity prior to the factorization process. Select the

ordering method by setting method to one of the following:

method

Description

IMSL NATURAL

matrix..

Natural ordering, i.e.the column ordering of the input

IMSL MMD ATA

Minimum degree ordering on the structure of 474 .

IMSL MMD AT PLUS A

Minimum degree ordering on the structure of

AT+ 4.

IMSL COLAMD

Column approximate minimum degree ordering.

IMSL PERMC

Use ordering given in permutation vector permc,

tation of the numbers 0,1,...n-1.

which is input by the user through optional argument
IMSL_COLPERM VECTOR. Vector permc is a permu-

Default: method = ITMSL. COLAMD

IMSL COLPERM VECTOR,intpermc[] (Input)

Array of length n which defines the permutation matrix P, before postordering. This argument is
required if IMSL COLUMN ORDERING METHOD withmethod = IMSL PERMC is used. Other-

wise, it is ignored.

IMSL TRANSPOSE, int transpose (Input)

Indicates if the problem 4x = b or one of the transposed problems A7x = or A¥x = b isto be

solved.

transpose |Description
0 Solve Ax=54.
1 Solve ATx =b.
This option can be used in conjunction with either of
the options that supply the factorization.
2 Solve A"x=1b.

This option can be used in conjunction with either of
the options that supply the factorization.

Default: transpose =0

IMSL_ITERATIVE_REFINEMENT, intrefine (Input)
Indicates if iterative refinement is desired.

=RogueWave

superlu (complex) Chapter 1 Linear Systems

125

refine Description

0 No iterative refinement.

1 Do iterative refinement.

Default: refine =1

IMSL FACTOR SOLVE,int factsol (Input)
Indicates if the LU factorization, the solution of a linear system or both are to be computed.

factsol Description

0 Compute the LU factorization of the input matrix A
and solve the system Ax =5 .

1 Only compute the LU factorization of the input matrix
and return.

The LU factorization is returned via optional argument
IMSL RETURN SPARSE LU FACTOR.
Input argument b is ignored.

2 Only solve 4x = b given the LU factorization of 4.
The LU factorization of 4 must be supplied via
optional argument
IMSL_SUPPLY SPARSE LU FACTOR.

Input argument a is ignored unless iterative refine-
ment, computation of the condition number or
computation of the reciprocal pivot growth factor is
required.

Default: factsol =0

IMSL DIAG_PIVOT THRESH, double diag pivot thresh (Input)
Specifies the threshold used for a diagonal entry to be an acceptable pivot,
00<diag pivot thresh <1.0.

Default: diag _pivot thresh=1.0.

IMSL SYMMETRIC MODE, int symm mode (Input)
Indicates if the symmetric mode option is to be used. This mode should be applied if the input matrix
A is diagonally dominant or nearly so. The user should then define a small diagonal pivot threshold

T
(e.g. 0.0 or 0.01) via optional argument IMSL DIAG PIVOT THRESH and choose an <A + A> -
based column permutation algorithm (e.g. column permutation method IMSL MMD AT PLUS A).

= Rogypmq\{q superlu (complex) Chapter 1 Linear Systems 126

symm_mode |Description

0 Do not use symmetric mode option.

1 Use symmetric mode option.

Default: symm mode =0

IMSL PERFORMANCE TUNING, intsp ienv[] (Input)
Vector of length 6 containing positive parameters that allow the user to tune the performance of the
matrix factorization algorithm.

i Description of Sp_ienv[i]

0 The panel size.
Default: sp_ienv[0] = 10

1 The relaxation parameter to control supernode amalgama-
tion.

Default: sp_ienv[1] = 5

2 The maximum allowable size for a supernode.
Default: sp_ienv[2] = 100

3 The minimum row dimension to be used for 2D blocking.
Default: sp_ienv[3] =200

4 The minimum column dimension to be used for 2D blocking.
Default: sp_ienv[4] = 40

5 The estimated fill factor for L and U, compared to A.
Default: sp_ienv[5] = 20

IMSL CSC_FORMAT, intHB col ptr[],intHB row ind[],fcomplex HB values[] (Input)
Accept the coefficient matrix in Compressed Sparse Column (CSC) Format in the main Introduction
chapter of this manual for a discussion of this storage scheme.

IMSL SUPPLY SPARSE LU FACTOR, Imsl_c_super_lu_factor lu_factor supplied (Input)
A structure of type Imsl_c_super_lu_factor containing the LU factorization of the input matrix com-
puted with the IMSL_ RETURN_ SPARSE LU FACTOR option. See the Description section for a
definition of this structure. To free the memory allocated within this structure, use function
imsl_c_superlu_factor_free.

IMSL RETURN SPARSE LU FACTOR, Imsl_c_super_lu_factor *1u factor returned (Output)
The address of a structure of type Imsl_c_super_lu_factor containing the LU factorization of the input
matrix. See the Description section for a definition of this structure. To free the memory allocated
within this structure, use function imsl_c_superlu_factor _free.

IMSL CONDITION, float *condition (Output)
The estimate of the reciprocal condition number of matrix A after equilibration (if done).

IMSL PIVOT GROWTH FACTOR, float *recip pivot growth (Output)
The reciprocal pivot growth factor

= R{nggmq\{q superlu (complex) Chapter 1 Linear Systems 127

min |(P.DADL.) | /U]

If recip pivot growth is much less than 1, the stability of the LU factorization could be poor.

IMSL FORWARD ERROR_BOUND, float *ferr (Output)
The estimated forward error bound for the solution vector x. This option requires argument
IMSL ITERATIVE REFINEMENT setto 1.

IMSL BACKWARD ERROR, float *berr (Output)
The componentwise relative backward error of the solution vector x. This option requires argument
IMSL ITERATIVE REFINEMENT setto 1.

IMSL RETURN USER, fcomplex x[] (Output)
A user-allocated array of length n containing the solution x of the linear system.

Description

Consider the sparse linear system of equations

Ax=0>b

Here, A isa general square, nonsingular » by n sparse matrix, and x and b are vectors of length . All entries
in A, x and b are of complex type.

Gaussian elimination, applied to the system above, can be shortly described as follows:

1. Compute a triangular factorization P.D,AD P.= LU . Here, D, and D, are positive definite diagonal

matrices to equilibrate the system and P, and P. are permutation matrices to ensure numerical stability
and preserve sparsity. L is a unit lower triangular matrix and U is an upper triangular matrix.

2. Solve Ax = b by evaluating

x=d"'b=D(P(U (L7 (P(Dib)))))

This is done efficiently by multiplying from right to left in the last expression: Scale the rows of p by D,.
Multiplying Pr<Drb) means permuting the rows of D,b .

Multiplying L' (Pr'Drb> means solving the triangular system of equations with matrix [by substitution.
Similarly, multiplying U (Lil <PrDrb> > means solving the triangular system with U.

Function ims1 c_superlu handlesstep 1 above by default or if optional argument IMSL FACTOR SOLVE is
used and set to 1. More precisely, before 4x = b is solved, the following steps are performed:

1. Equilibrate matrix A, i.e. compute diagonal matrices D, and D, sothat 4 = D,AD, is "better condi-

A—1 A
tioned”than A4 ,ie. 4 isless sensitive to perturbationsin 4 than 4" is to perturbationsin A .

= Rogygmq\{q superlu (complex) Chapter 1 Linear Systems

128

2. Order the columns of ,21 to increase the sparsity of the computed L and U factors, i.e. replace 21 by

AP, where P, is a column permutation matrix.

3. Compute the LU factorization of AP,. For numerical stability, the rows of AP, are eventually permuted
through the factorization process by scaled partial pivoting, leading to the decomposition

A= P.AP_ = LU.The LU factorization is done by a left looking supernode-panel algorithm with 2-D block-
ing. See Demmel, Eisenstat, Gilbert et al. (1999) for further information on this technique.

4. Compute the reciprocal pivot growth factor

- 4,1l
1i=n 1USl

where 21_1. and U, denote the ;j -th column of matrices A and U, respectively.

5. Estimate the reciprocal of the condition number of matrix A.

During the solution process, this information is used to perform the following steps:

1. Solve the system A4x = b using the computed triangular L and U factors.

2. lteratively refine the solution, again using the computed triangular factors. This is equivalent to Newton’s
method.

3. Compute forward and backward error bounds for the solution vector x.
Some of the steps mentioned above are optional. Their settings can be controlled by the appropriate optional

arguments of function imsl ¢ superlu.

Function ims1 c superlu uses a supernodal storage scheme for the LU factorization of matrix A. The factor-
ization is contained in structure Imsl_c_super_lu_factor and two sub-structures. Following is a short description of
these structures:

typedef struct{

int nnz; /* Number of nonzeros in the matrix */

f complex *nzval; /* Array of nonzero values packed by column
*/

int *rowind; /* Array of row indices of the nonzeros */

int *colptr; /* colptr([j] stores the location in nzvall[]

and rowind[] which starts column j. It has
ncol+l entries, and colptr[ncol] points to
the first free location in arrays nzvall[]
and rowind[]. */

} Imsl c hb format;

typedef struct{

int nnz; /* Number of nonzeros in the supernodal
matrix */
int nsuper; /* Index of the last supernode */
f complex *nzval; /* Array of nonzero values packed by column
*/

= Rogygmq\{q superlu (complex) Chapter 1 Linear Systems 129

int

int

int

int

int

*nzval colptr;

*rowind;

*rowind colptr;

*col to sup;

*sup to col;

} Imsl c sc format;

typedef struct{
int nrow;
int ncol;
int equilibration method; /* The method used to equilibrate A:

float *rowscale;

float *columnscale;

int *rowperm;

int *colperm;

Imsl ¢ hb format *U;

Imsl ¢ sc format *L;

} Imsl c super lu factor;

/* Array of length ncol+l; nzval colptr[j]
stores the location in nzval which starts
column j. nzval colptr[ncol] points to the
first free location in arrays nzval[] and
nzval colptr[]. */

/* Array of compressed row indices of
rectangular supernodes */

/* Array of length ncol+l;
rowind colptr[sup to col[s]] stores the
location in rowind[] which starts
all columns in supernode s, and
rowind colptr[ncol] points to the first
free location in rowind[]. */

/* Array of length ncol+l; col to sup[j] is
the supernode number to which column j
belongs. Only the first ncol entries in
col to sup[] are defined. */

/* Array of length ncol+l; sup to col[s]
points to the starting column of the s-th
supernode. Only the first nsuper+2 entries
in sup to col[] are defined, and
sup_to col[nsuper+l] = ncol+l. */

/* number of rows of matrix A */
/* number of columns of matrix A */

0 - No equilibration

1 - Row equilibration.
2 — Column equilibration
3 - Both row and column equilibration */

/* Array of length nrow containing the row
scale factors for A */

/* Array of length ncol containing the
column scale factors for A */

/* Row permutation array of length nrow
describing the row permutation matrix Pr

*/

/* Column permutation array of length ncol
describing the column permutation matrix
Pc */

/* The part of the U factor of A outside the
supernodal blocks, stored in Harwell-
Boeing format */

/* The L factor of A, stored in supernodal
format as block lower triangular matrix */

=RogueWave

superlu (complex) Chapter 1 Linear Systems

130

Structure Imsl_z_super_lu_factor and its two sub-structures are defined similarly by replacing float by double,
f.complex by d_complex, Ims|_c_hb_format by Ims|_z_hb_format and Ims/_c_sc_format by Ims|_z_sc_format in their
definitions.

For a definition of supernodes and its use in sparse unsymmetric LU factorization, see the SuperLU Users' guide
(1999) and J.W. Demmel, S. C. Eisenstat et al. (1999).

As an example, consider the matrix

I1-i 0 1—-i 1I-7i O
2 1-i O 0 0
A= 0 1+7i 1-i O 0
0 0 0 1+i 1—i
2 1+i O 0 2—-i

Factorization of this matrix via ims1 ¢ superlu using natural column ordering, no equilibration, setting
sp_ienv([1]from its default value 5 to 1 and reducing the diagonal pivot thresh factor to 0.5 results in the fol-
lowing LU decomposition:

1 1—i 1—i
1+i -2 -2
A=LU= 1+i 2i
1+i 1—i
1+i @ 2i 2 | i
Considering the filled matrix F ([denoting the identity matrix),
1—i 1—i 1—i
I+i 1-7 -2 =2
F=L+U-I= i 1+i 2i
1+i 1—i

1+i i 2i 2 i
the supernodal structure of the factors of matrix A can be described by

81 Uz Uy
Sl SZ S2 1/[4
Sy Sy Uy
S3 83
S S2 Sy 83 83

where §;denotes a nonzero entry in the jth supernode and u; denotes a nonzero entry in the i-th column of U
outside the supernodal block.

= Rogygmq\{q superlu (complex) Chapter 1 Linear Systems 131

Therefore, in a supernodal storage scheme the supernodal part of matrix F is stored as the lower block-diagonal

matrix

1—i
1+i
L

snode ~

1+i

1—i
i

-2
1+

2i

1+i 1—i

2 i

and the part outside the supernodes as the upper triangular matrix

1—i

1—i
-2
2i

*

*

This is in accordance with the output for structure Ims/_c_super_lu_factor:

Equilibration method: 0

Scale vectors:
rowscale:
columnscale:

Permutation vectors:

colperm:
rowperm:

012 34
012 3 4

Harwell-Boeing matrix U:

nrow 5,
nzval:

ncol 5,
(1.000000,-1.000000)

nnz 11

(1.000000,-1.000000)

rowind:
colptr:

0120
000144

Supernodal matrix L:

nrow 5,
nzval:
0

B WD WA DR BN RS
B WWNNNR P P2 O oo

ncol 5,

nnz 11, nsuper 2
(1.000000,-1.000000)
(1.000000,1.000000)
(1.000000,1.000000)
(1.000000,-1.000000)
(0.000000,1.000000)
(0.000000,1.000000)
(-2.000000,0.000000)
(
(
(
(
(
(

e e L

.000000,1.000000)
.000000,2.000000)
.000000,1.000000)
.000000,0.000000)
.000000,-1.000000)
.000000,1.000000)

O NDEFE OH

(-2.000000,0.000000)

1.000000 1.000000 1.000000 1.000000 1.000000
1.000000 1.000000 1.000000 1.000000 1.000000

(0.000000,2.000000)

=RogueWave

superlu (complex)

Chapter 1 Linear Systems

132

nzval colptr: 0 3 6 9 11 13
rowind: 01 41 2 4 3 4
rowind colptr: 0 3 6 6 8 8
col to sup: 0 1 1 2 2
sup to col: 0 1 3 5

Function ims1l c_ superluis based on the SuperLU code written by Demmel, Gilbert, Li et al. For more
detailed explanations of the factorization and solve steps, see the SuperLU User's Guide (1999).

Copyright (c) 2003, The Regents of the University of California, through Lawrence Berkeley National Laboratory
(subject to receipt of any required approvals from U.S. Dept. of Energy)

All rights reserved.

Redistribution and use in source and binary forms, with or without modification, are permitted provided that the
following conditions are met:

(1) Redistributions of source code must retain the above copyright notice, this list of conditions and the following
disclaimer.

(2) Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the fol-
lowing disclaimer in the documentation and/or other materials provided with the distribution.

(3) Neither the name of Lawrence Berkeley National Laboratory, U.S. Dept. of Energy nor the names of its contrib-
utors may be used to endorse or promote products derived from this software without specific prior written
permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS “AS IS” AND ANY EXPRESS OR
IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND
FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CON-
TRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF
USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY
WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

Examples

Example 1

The LU factorization of the sparse complex 6x6 matrix

= R{ng?mq\{q superlu (complex) Chapter 1 Linear Systems 133

is computed. Let

so that

[10+ 7i 0 0 0 0 0
0 342i -3 —1+42i 0 0
0 0 4+2ij 0 0 0
-2 —4j 0 0 1+6i —1+3i 0
—5+4i 0 0 -5 12+2i —-7+7i
[—1+12i —2+8i 0 0 0 3+7i |

yi=(1+i,2 +2i,3 + 3i,4 + 4i,5 + 5i,6 + 6/) 1

b: = Ay = (3 + 17i, -19 + 5i, 6 + 18, -38 + 32i, -63 + 49i, -57 + 83i)"
by: = Aly = (~112 + 54i, -58 + 46, 12i, -51 + 5i, 34 + 78i, -94 + 60i)"

and

by = Ay = (54 - 112i, 46 - 58,12, 5 - 51, 78 + 34i, 60 - 94i7)

The LU factorization of A is used to solve the sparse complex linear systems Ax = b, A'x = b, and A'x = b,.

#include <imsl.h>

int main () {

Imsl c sparse elem al]

f complex b[] =

f complex bl[]

f complex b2[]

= {0, 0, {10.0, 7.0},

1, 1, {3.0, 2.0},

1, 2, {-3.0, 0.0},

1, 3, {-1.0, 2.0},

2, 2, {4.0, 2.0},

3, 0, {-2.0, -4.0},

3, 3, {1.0, 6.0},

3, 4, {-1.0, 3.0},

4, 0, {-5.0, 4.0},

4, 3, {-5.0, 0.0},

4, 4, {12.0, 2.0},

4, 5, {-7.0, 7.0},

5, 0, {-1.0, 12.0},

5, 1, {-2.0, 8.0},

5, 5, {3.0, 7.0}};
{{3.0, 17.0}, {-19.0, 5.0}, {6.0, 18.0},
{-38.0, 32.0}, {-63.0, 49.0}, {-57.0, 83.0}};
{{-112.0,54.0}, {-58.0,46.0}, {0.0,12.0},

{-51.0,5.0},

{34.0,78.0},

{-94.0,60.0}};

{{54.0,-112.0},
{5.0, -51.0},

{78.0,

{46.0,

34.0%,

-58.0},

{60.0,

{12.0,

0.0},

-94.0}1};

=RogueWave

superlu (complex)

Chapter 1 Linear Systems

int n = 6, nz = 15;
f complex *x = NULL;

x = imsl ¢ superlu (n, nz, a, b, 0);
imsl ¢ write matrix ("solution to A*x = b", n, 1, x, 0);
imsl free (x);

x = imsl c superlu (n, nz, a, bl, IMSL TRANSPOSE, 1, 0);
imsl c write matrix ("solution to A"T*x = bl", n, 1, x, 0);
imsl free (x);

x = imsl c superlu (n, nz, a, b2, IMSL TRANSPOSE, 2, 0);
imsl ¢ write matrix ("solution to A"H*x = b2", n, 1, x, 0);
imsl free (x);

}

Output
solution to A*x = b

1 1, 1)
2 (2, 2)
3 (3, 3)
4 | 4, 4)
5 (5, 5)
6 (6 6)

~

solution to A"T*x = bl

1« 1, 1)
2 2, 2)
3 3, 3)
4 4, 4)
5 ¢ 5, 5)
6 (6, 6)

solution to A"H*x = Db2
1 1, 1)
2 2, 2)
3 3, 3)
4 (4, 4)
SI S,)
6 (6, 6)
Example 2

This example uses the matrix A = E(1000,10) to show how the LU factorization of A can be used to solve a linear
system with the same coefficient matrix A but different right-hand side. Maximum absolute errors are printed.
After the computations, the space allocated for the LU factorization is freed via function

imsl c superlu factor free.

#include <imsl.h>

= Rogypmq\{q superlu (complex) Chapter 1 Linear Systems 135

#include <stdlib.h>
#include <stdio.h>

int main ()

{
Imsl c sparse elem *a;
Imsl ¢ super lu factor lu factor;
f complex *b, *x, *mod five, *mod ten;
float error factor solve, error solve;
int n = 1000, ¢ = 10;
int i, nz, index;

/* Get the coefficient matrix */
a = imsl c generate test coordinate (n, ¢, &nz, 0);

/* Set two different predetermined solutions */
mod five = (f complex*) malloc (n*sizeof (*mod five));
mod ten = (f complex*) malloc (n*sizeof (*mod ten));
for (1=0; i<n; i++) {
mod five[i] = imsl cf convert ((float) (i % 5), 0.0);
mod ten[i] = imsl cf convert ((float) (i % 10), 0.0);

/* Choose b so that x will approximate mod five */

b = (f complex *) imsl ¢ mat mul rect coordinate ("A*x",
IMSL A MATRIX, n, n, nz, a,
IMSL X VECTOR, n, mod five,
0) 7

/* Solve Ax = b */

x = imsl c superlu (n, nz, a, b,
IMSL RETURN SPARSE LU FACTOR, &lu factor,
0);

/* Compute max absolute error */

error factor solve = imsl ¢ vector norm (n, X,
IMSL SECOND VECTOR, mod five,
IMSL INF NORM, &index,
0);

free (mod five);
imsl free (b);
imsl free (x);

/* Get new right hand side -- b = A * mod ten */

b = (f complex *) imsl ¢ mat mul rect coordinate ("A*x",
IMSL A MATRIX, n, n, nz, a,
IMSL X VECTOR, n, mod ten,
0)7

/* Use the previously computed factorization to solve Ax = b */

= R{ng?mq\{q superlu (complex) Chapter 1 Linear Systems 136

x = imsl c superlu (n, nz, a, b,
IMSL SUPPLY SPARSE LU FACTOR, lu factor,
IMSL FACTOR SOLVE, 2,
0);

error solve = imsl ¢ vector norm (n, X,
IMSL SECOND VECTOR, mod ten,
IMSL INF NORM, &index,
0);

free (mod ten);
imsl free (b);
imsl free (x);
imsl free (a);

/* Free sparse LU structure */
imsl c superlu factor free (&lu factor);

/* Print errors */

printf ("absolute error (factor/solve) = %e\n",
error factor solve);
printf ("absolute error (solve) = %e\n", error solve);
}
Output
absolute error (factor/solve) = 9.581565e-007
absolute error (solve) = 2.017575e-006

Warning Errors

IMSL ILL CONDITIONED The input matrix is too ill-conditioned. An estimate of

the reciprocal of its L, condition number is

“rcond” = #.
The solution might not be accurate.

Fatal Errors

IMSL SINGULAR MATRIX The input matrix is singular

EE Rogygmqqe: superlu (complex)

Chapter 1 Linear Systems

137

superlu_smp

126! OpenMIP
PE e B CE more. . .

more. ..

Computes the LU factorization of a general sparse matrix by a left-looking column method using OpenMP paral-
lelism, and solves the real sparse linear system of equations Ax=b .

Synopsis
#include <ims1l.h>
float *ims1l f superlu smp (intn,int nz, Imslf sparse_elem a[], floatb[],..,0)
void imsl f superlu smp factor free (ImslLfsuper_lu_smp_factor *factor)

The type double functions are ims1 d superlu smpand imsl d superlu smp factor free.

Required Arguments

int n (Input)
The order of the input matrix.

int nz (Input)
Number of nonzeros in the matrix.

Imsl_f sparse_elem a[] (Input)
An array of length nz containing the location and value of each nonzero entry in the matrix. See the
explanation of the Ims1 f sparse elem structure in the section Matrix Storage Modes in the
“Introduction” chapter of this manual.

floatb[] (Input)
An array of length n containing the right-hand side.

Return Value

A pointer to the solution x of the sparse linear system Ax = b. To release this space, use ims1 free. If no solution
was computed, then NULL is returned.

Synopsis with Optional Arguments

#include <imsl.h>

= R{ng?mq\{q superlu_smp Chapter 1 Linear Systems 138

float *ims1l f superlu smp (intn,int nz, Imslf sparse_elem a[], floatb[],
IMSL EQUILIBRATE,intequilibrate,
IMSL COLUMN ORDERING METHOD, Imsl_col ordering method,
IMSL COLPERM VECTOR, intpermc|],
IMSL TRANSPOSE, int transpose,
IMSL ITERATIVE REFINEMENT,intrefine,
IMSL FACTOR_SOLVE,int factsol,
IMSL DIAG PIVOT THRESH, floatdiag pivot thresh,
IMSL SNODE PREDICTION, int snode prediction,
IMSL PERFORMANCE TUNING,intsp ienv[],
IMSL CSC_FORMAT, intHB col ptr[],intHB row ind, float HB values|[],
IMSL SUPPLY SPARSE LU FACTOR, Imslf super_lu_smp_factor *1u factor supplied,
IMSL RETURN SPARSE LU FACTOR, Imslf super_lu_smp_factor *1u factor returned,
IMSL CONDITION, float *condition,
IMSL PIVOT GROWTH FACTOR, float *recip pivot growth,
IMSL FORWARD ERROR_ BOUND, float * ferr,
IMSL BACKWARD_ ERROR, float *berr,
IMSL RETURN USER, floatx[],

0)

Optional Arguments

IMSL EQUILIBRATE,intequilibrate (Input)
Specifies if the input matrix A should be equilibrated before factorization.

equi librate |Description

0 Do not equilibrate A before factorization

1 Equilibrate A before factorization.

Default: equilibrate = 0.

= R{ng?mq\{q superlu_smp Chapter 1 Linear Systems 139

IMSL COLUMN ORDERING METHOD, Imsl_col_ordering method (Input)
The column ordering method used to preserve sparsity prior to the factorization process. Select the
ordering method by setting method to one of the following:

method Description

IMSL NATURAL Natural ordering, i.e.the column ordering of the input
matrix.

IMSL_MMD_ATA Minimum degree ordering on the structure of AT A.

IMSL_MMD_AT_PLUS_A |Minimum degree ordering on the structure of AT + A.

IMSL COLAMD Column approximate minimum degree ordering.

IMSL PERMC Use ordering given in permutation vector permc, which is
input by the user through the optional argument

IMSL_ COLPERM VECTOR. Vector permc is a permutation
of the numbers 0,1,..., n-1.

Default: method = IMSL COLAMD.

IMSL COLPERM VECTOR, intpermc[] (Input)
Array of length n that defines the permutation matrix P. before postordering. This argument is
required if IMSL COLUMN ORDERING METHOD with method = IMSL PERMC is used. Other-

wise, it is ignored.
IMSL TRANSPOSE, int transpose (Input)

Indicates if the transposed problem A'x = b is to be solved. This option can be used in conjunction
with either of the options that supply the factorization.

transpose |Description
0 Solve Ax = b.

1 Solve ATx = b.

Default: transpose = 0.

IMSL_I TERAT IVE_REFINEMENT, intrefine (Input)
Indicates if iterative refinement is desired.

refine Description

0 No iterative refinement.

1 Do iterative refinement.

Default: refine = 1.

IMSL FACTOR_SOLVE,int factsol (Input)
Indicates if the LU factorization, the solution of a linear system, or both are to be computed.

= Rogypmq\{q superlu_smp Chapter 1 Linear Systems 140

factsol

Description

0

Compute the LU factorization of the input matrix A and
solve the system Ax = b.

Only compute the LU factorization of the input matrix
and return.

The LU factorization is returned via the optional argu-
ment IMSL RETURN SPARSE LU FACTOR.

Input argument b is ignored.

Only solve Ax = b given the LU factorization of A.

The LU factorization of A must be supplied via the
optional argument
IMSL_SUPPLY SPARSE LU FACTOR.

Input argument a is ignored unless iterative refinement,
computation of the condition number, or computation
of the reciprocal pivot growth factor is required.

Default: factsol =0.

IMSL DIAG PIVOT THRESH, floatdiag pivot thresh (Input)
Specifies the threshold used for a diagonal entry to be an acceptable pivot,
00 <diag pivot thresh <1.0.

Default: diag _pivot thresh=1.0.

IMSL SNODE PREDICTION, int snode prediction (Input)

Indicates which scheme is used to predict the number of nonzeros in the L supernodes.

n

snode_predictio |Description

0

Use static scheme for the prediction of the num-
ber of nonzeros in the L supernodes.

Use dynamic scheme for the prediction of the
number of nonzeros in the L supernodes.

Default: snode_prediction=0.

IMSL PERFORMANCE TUNING,intsp_ienv[] (Input)

Array of length 8 containing parameters that allow the user to tune the performance of the matrix
factorization algorithm. The elements sp_ienv[i] must be positive for i =0,...,4 and different

from zero for 1 =5,6,7.

Description of Sp_ienv[i]

0 The panel size.
Default: sp_ienv[0] =10.

1 The relaxation parameter to control supernode amalgama-
tion.

Default: sp_ienv[1] =5.

=RogueWave

superlu_smp Chapter 1 Linear Systems

141

Description of Sp_ienv[i]

2 The maximum allowable size for a supernode.
Default: sp_ienv[2] =100.

3 The minimum row dimension to be used for 2D blocking.
Default: sp_ienv[3] =200.

4 The minimum column dimension to be used for 2D blocking.
Default: sp_ienv[4] = 40.

5 The size of the array nzval to store the values of the L super-
nodes. A negative number represents the fills growth factor,
i.e. the product of its absolute magnitude and the number of
nonzeros in the original matrix A will be used to allocate stor-
age. A positive number represents the number of nonzeros
for which storage will be allocated.

This element of array sp_ienv is used only if a dynamic
scheme for the prediction of the sizes of the L supernodes is
used, i.e. if snode prediction=1.

Default: sp_ienv[5] =-20.

6 The size of the arrays rowind and nzval to store the col-
umns in U. A negative number represents the fills growth
factor, i.e. the product of its absolute magnitude and the
number of nonzeros in the original matrix A will be used to
allocate storage. A positive number represents the number of
nonzeros for which storage will be allocated.

Default: sp_ienv[6] =-20.

7 The size of the array rowind to store the subscripts of the L
supernodes. A negative number represents the fills growth
factor, i.e. the product of its absolute magnitude and the
number of nonzeros in the original matrix A will be used to
allocate storage. A positive number represents the number of
nonzeros for which storage will be allocated.

Default: sp_ienv[7] =-10.

IMSL CSC_FORMAT, intHB col ptr[],intHB row ind[],floatHB values[] (Input)
Accept the coefficient matrix in compressed sparse column (CSC) format, as described in the
Compressed Sparse Column (CSC) Format section of the “Introduction” chapter of this manual.

IMSL SUPPLY SPARSE LU FACTOR, Imslf super_lu_smp_factor *1u_factor supplied
(Input)
The address of a structure of type Imsl_f super_lu_smp_factor containing the LU factors of the input
matrix computed with the IMSL._ RETURN SPARSE LU FACTOR option. See the Description sec-
tion for a definition of this structure. To free the memory allocated within this structure, use function

imsl f superlu smp factor free.

IMSL RETURN SPARSE LU FACTOR, Imsl f super_lu_smp_factor *1u_factor returned (Out-
put)
The address of a structure of type Ims/_f super_lu_smp_factor containing the LU factorization of the
input matrix. See the Description section for a definition of this structure. To free the memory allo-
cated within this structure, use function ims1l f superlu smp factor free.

= R{nggmq\{q superlu_smp Chapter 1 Linear Systems

142

IMSL CONDITION, float *condition (Output)
The estimate of the reciprocal condition number of matrix a after equilibration (if done).

IMSL PIVOT GROWTH FACTOR, float *recip pivot growth (Output)
The reciprocal pivot growth factor

m}n{ H(PrDrADCPc>jHOO/ | UjHOO}.
If recip pivot growth is much less than 1, the stability of the LU factorization could be poor.

IMSL FORWARD ERROR_BOUND, float *ferr (Output)
The estimated forward error bound for the solution vector x. This option requires argument
IMSL ITERATIVE REFINEMENT setto 1.

IMSL BACKWARD ERROR, float *berr (Output)
The componentwise relative backward error of the solution vector x. This option requires argument
IMSL ITERATIVE REFINEMENT setto 1.

IMSL RETURN USER, float x[] (Output)
A user-allocated array of length n containing the solution x of the linear system.

Description

The steps ims1 f superlu smp uses to solve linear systems are identical to the steps described in the doc-
umentation of the serial version ims1 f superlu.

Function ims1 f superlu smp uses asupernodal storage scheme for the LU factorization of matrix A. In
contrast to the sequential version, the consecutive columns and supernodes of the L and U factors might not be
stored contiguously in memory. Thus, in addition to the pointers to the beginning of each column or supernode,
also pointers to the end of each column or supernode are needed. The factorization is contained in structure
Imsl_f super_lu_smp_factor and its two sub-structures Imsl_f hbp_format and Ims/_f scp_format. Following is a
short description of these structures:

Table 1.1 — Structure Ims1 f hbp format

Parameter Data Type |Description

nnz int The number of nonzeros in the matrix.
nzval float * Array of nonzero values packed by column.
rowind int * Array of row indices of the nonzeros.
colbeg int x Array of size ncol+1; colbeg[j] stores the

locationin nzval[] and rowind[], which
starts column 5. Element colbeg[ncol]
points to the first free location in arrays
nzval[] and rowind[].

colend int * Array of size ncol; colend[7] stores the
location in nzval[] and rowind[] which s
one past the last element of column 3.

= R{ng?mq\{q superlu_smp Chapter 1 Linear Systems 143

Table 1.2 — Structure Ims1 f scp format

Parameter

Data Type

Description

nnz

int

The number of nonzeros in the supernodal
matrix.

nsuper

int

The number of supernodes minus one.

nzval

float *

Array of nonzero values packed by column.

nzval colbeg

int x

Array of size ncol+1; nzval colbegl[j]
points to the beginning of column jin
nzvall[].Entrynzval colbeg[ncol]
points to the first free location in nzval[].

nzval colend

int x

Array of size ncol;nzval colend[j] points
to one past the last element of column 5§ in
nzvall[].

rowind

int x

Array of compressed row indices of the rect-
angular supernodes.

rowind colbeg

int x

Array of size ncol+1; rowind colbeg[7j]
points to the beginning of column 5 in
rowind[].Elementrowind colbeg[ncol]
points to the first free location in rowind[].

rowind colend

int x

Array of size ncol; rowind_colend[]]
points to one past the last element of column
Jjinrowind[].

col to sup

int x

Array of size ncol+1; col to_sup[j]isthe
supernode number to which column J
belongs. Only the first ncol entries in
col to supl] are defined.

sup_to colbeg

int x

Array of size ncol+1; sup_to_colbeg[s]
points to the first column of the s-th super-
node; only the first nsuper+1 locations of this
array are used.

sup to colend

int x

Array of size ncol; sup_to colend[s]
points to one past the last column of the s-th
supernode. Only the first nsuper+1 locations
of this array are used.

Table 1.3 — Structure Ims1 f super lu smp factor

Parameter Data Type Description
nrow int The number of rows of matrix A.
ncol int The number of columns of matrix A.
equilibration method int The method used to equilibrate A:

0 - No equilibration.

1 - Row equilibration.

2 - Column equilibration.

3 - Both row and column equilibration.
rowscale float = Array of size nrow containing the row

scale factors for A.

= RogueWave

superlu_smp Chapter 1 Linear Systems

144

Table 1.3 — Structure Ims1 f super lu smp factor

columnscale float = Array of size ncol containing the col-
umn scale factors for A.

rowperm int * Row permutation array of size nrow
describing the row permutation matrix
P..

colperm int * Column permutation array of size ncol
describing the column permutation
matrix Pe.

U Imsl_f_hbp_format * The part of the U factor of A outside the
supernodal blocks, stored in Harwell-
Boeing format.

L Imsl_f_scp_format = The L factor of A, stored in supernodal
format as block lower triangular matrix.

Structure Ims/_d_super_lu_smp_factor and its two sub-structures are defined similarly by replacing float with dou-
ble, Imsl_f hbp_format with Imsl_d_hbp_format, and Imsl_f scp_format with Ims|_d_scp_format in their respective
definitions.

In contrast to the sequential version, the numerical factorization phase of the LU decomposition is parallelized.
Since a dynamic memory expansion as in the serial case is difficult to implement for the parallel code, the esti-
mated sizes of array rowind for the L and of arrays rowind and nzval for the U factor (see structures
Imsl_f scp_format and Imsl_f hbp_format above) must be predetermined by the user via elements 6 and 7 of the
performance tuning array sp_ienv.

In order to ensure that the columns of each L supernode are stored contiguously in memory, a static or dynamic
prediction scheme for the size of the L supernodes can be used. The static version, which function

imsl f superlu_smp uses by default, exploits the observation that for any row permutation P in PA = LU,
the nonzero structure of L is contained in that of the Householder matrix H from the Householder sparse QR fac-
torization A = QR. Furthermore, it can be shown that each fundamental supernode in L is always contained in a
fundamental supernode of H. Therefore, the storage requirement for the L supernodes and array nzval inthe L
factor respectively can be estimated and allocated prior to the factorization based on the size of the H super-
nodes. The algorithm used to compute the supernode partition and the size of the supernodes in H is almost
linear in the number of nonzeros of matrix A.

In practice, the above static prediction scheme is quite tight for most problems. However, if the number of nonze-
ros in H greatly exceeds the number of nonzeros in L, the user can try a dynamic prediction scheme by setting
optional argument IMSL SNODE PREDICTION to 1. This scheme still uses the supernode partition in H, but
dynamically searches the supernodal graph of L to obtain a much tighter upper bound for the required storage.
Use of the dynamic scheme requires the user to define the size of array nzval in the L factor via element 5 of
the performance tuning array sp_ienv.

For a complete description of the parallel algorithm, see Demmel et al. (1999¢).

Copyright (c) 2003, The Regents of the University of California, through Lawrence Berkeley National Laboratory
(subject to receipt of any required approvals from U.S. Dept. of Energy).

All rights reserved.

= Rogygmq\{q superlu_smp Chapter 1 Linear Systems 145

Redistribution and use in source and binary forms, with or without modification, are permitted provided that the
following conditions are met:

(1) Redistributions of source code must retain the above copyright notice, this list of conditions and the following
disclaimer.

(2) Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the fol-
lowing disclaimer in the documentation and/or other materials provided with the distribution.

(3) Neither the name of Lawrence Berkeley National Laboratory, U.S. Dept. of Energy nor the names of its contrib-
utors may be used to endorse or promote products derived from this software without specific prior written
permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS “AS IS” AND ANY EXPRESS OR
IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND
FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CON-
TRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF
USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY
WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

Examples

Example 1

The LU factorization of the sparse 6x6 matrix

(10 0 0 0 0 O
0 10 3 -1 0 O
0 0 IS5 0 0 O
-2 0 0 10 -1 O
-1 0 0 -5 1 -3

-1 -2 0 0 0 6]

is computed.
Lety=(1,2,3,4,56)", so that b; :=Ay = (10,7,45,33,-34,31)" and b, :=A'y = (-9,8,39,13,1,21)".

The LU factorization of A is used to solve the sparse linear systems Ax = b, and A'x = b,.

#include <imsl.h>
int main () {
Imsl f sparse elem al[] = { 0, 0, 10.0,

1, 1, 10.0,
1, 2, -3.0,

= Rogygmq\{q superlu_smp Chapter 1 Linear Systems 146

1, 3, -1.0,

2, 2, 15.0,

3, 0, =-2.0,

3, 3, 10.0,

3, 4, -1.0,

4, 0, -1.0,

4, 3, =-5.0,

4, 4, 1.0,

4, 5, =-3.0,

5, 0, -1.0,

5, 1, -2.0,

5, 5, 6.0};
float bl[] {10.0, 7.0, 45.0, 33.0, -34.0, 31.0};
float b2[] = { -9.0, 8.0, 39.0, 13.0, 1.0, 21.0 };
int n = 6, nz = 15;
float *x = NULL;

x = imsl f superlu smp (n, nz, a, bl, 0);
imsl f write matrix ("solution to A*x = bl", 1, n, x, 0);
imsl free (x);

x = imsl f superlu smp (n, nz, a, b2, IMSL TRANSPOSE, 1, 0);
imsl f write matrix ("solution to A"T*x = b2", 1, n, x, 0);
imsl free (x);

}

Output
solution to A*x = bl
1 2 3 4 5 6
1 2 3 4 5 6
solution to A"T*x = b2
1 2 3 4 5 6
1 2 3 4 5 6
Example 2

This example uses the matrix A = E(1000,10) to show how the LU factorization of A can be used to solve a linear
system with the same coefficient matrix A but different right-hand side. Maximum absolute errors are printed.
After the computations, the space allocated for the LU factorization is freed via function

imsl f superlu smp factor free

#include <imsl.h>
#include <stdlib.h>
#include <stdio.h>

= R{nggmq\{q superlu_smp Chapter 1 Linear Systems

147

int main () {

Imsl f sparse elem *a = NULL;

Imsl f super lu smp factor lu factor;

float *b = NULL, *x = NULL, *mod five = NULL, *mod ten = NULL;
float error factor solve, error solve;

int n = 1000, ¢ = 10;

int i, nz, index;

/* Get the coefficient matrix */
a = imsl f generate test coordinate (n, ¢, &nz, 0);

/* Set two different predetermined solutions */

mod five = (float*) malloc (n*sizeof (*mod five));
mod _ten = (float*) malloc (n*sizeof (*mod ten));
for (i=0; i<n; 1i++) {

mod five[i] = (float) (i % 5);

mod ten[i] = (float) (i % 10);

/* Choose b so that x will approximate mod five */
b = (float *) imsl f mat mul rect coordinate ("A*x",
IMSL A MATRIX, n, n, nz, a,
IMSL X VECTOR, n, mod five, 0);

/* Solve Ax = b */
x = imsl f superlu smp (n, nz, a, b,
IMSL RETURN SPARSE LU FACTOR, &lu factor, 0);

/* Compute max absolute error */

error_ factor solve = imsl f vector norm (n, X,
IMSL SECOND VECTOR, mod five,
IMSL INF NORM, &index,
0);

free (mod five);
imsl free (b);
imsl free (x);

/* Get new right hand side -- b = A * mod ten */

b = (float *) imsl f mat mul rect coordinate ("A*x",
IMSL A MATRIX, n, n, nz, a,
IMSL X VECTOR, n, mod ten,
0);

/* Use the previously computed factorization
to solve Ax = b */
x = imsl f superlu smp (n, nz, a, b,
IMSL SUPPLY SPARSE LU FACTOR, &lu factor,
IMSL FACTOR SOLVE, 2,

= R{ng?mq\{q superlu_smp Chapter 1 Linear Systems 148

0);

error solve = imsl f vector norm (n, X,
IMSL SECOND VECTOR, mod ten,
IMSL INF NORM, &index,
0);

free (mod ten);
imsl free (b);
imsl free (x);
imsl free (a);

/* Free sparse LU structure */
imsl f superlu smp factor free (&lu factor);

/* Print errors */

printf ("absolute error (factor/solve) = %e\n",
error factor solve);
printf ("absolute error (solve) = %e\n", error_solve);
}
Output
absolute error (factor/solve) = 1.096725e-005
absolute error (solve) = 5.435944e-005

Warning Errors

IMSL ILL CONDITIONED The input matrix is too ill-conditioned. An estimate of
the reciprocal of its L, condition number is
“rcond” = #. The solution might not be accurate.

Fatal Errors

IMSL SINGULAR MATRIX The input matrix is singular.

= R{ng?mq\{q superlu_smp Chapter 1 Linear Systems 149

superlu_smp (complex)

more. ..

Computes the LU factorization of a general complex sparse matrix by a left-looking column method using
OpenMP parallelism and solves the complex sparse linear system of equations Ax = b.

Synopsis
#include <imsl.h>
fcomplex *ims1l c superlu_smp (int n, int nz, Imsl_c_sparse_elem a [1, f.complex b[],...,0)
void imsl c superlu smp factor free (Ims_c_super_lu_smp_factor *factor)

The type d_complex functions are ims1_z superlu smpand imsl z superlu smp factor free.

Required Arguments

int n (Input)
The order of the input matrix.

intnz (Input)
Number of nonzeros in the matrix.

Imsl_c_sparse_elem a[] (Input)
An array of length nz containing the location and value of each nonzero entry in the matrix. See the
main “Introduction” chapter of this manual for an explanation of the Imsl_c_sparse_elem structure.

f.complexb[] (Input)
An array of length n containing the right-hand side.

Return Value

A pointer to the solution x of the sparse linear system Ax = b. To release this space, use ims1 free. If no solution
was computed, then NULL is returned.

Synopsis with Optional Arguments

#include <imsl.h>

= R{ng?mg\{q superlu_smp (complex) Chapter 1 Linear Systems 150

f.complex *ims1l c superlu_ smp (intn, intnz, Imsl_c_sparse_elem a[],f complexb[],
IMSL EQUILIBRATE,intequilibrate,
IMSL COLUMN ORDERING METHOD, Imsl_col ordering method,
IMSL COLPERM VECTOR, intpermc|],
IMSL TRANSPOSE, int transpose,
IMSL ITERATIVE REFINEMENT,intrefine,
IMSL FACTOR_SOLVE,int factsol,
IMSL DIAG PIVOT THRESH, floatdiag pivot thresh,
IMSL SNODE PREDICTION, int snode prediction,
IMSL PERFORMANCE TUNING,intsp ienv[],
IMSL CSC_FORMAT, intHB col ptr[],intHB row ind[],fcomplex HB values|[],
IMSL SUPPLY SPARSE LU FACTOR, Imsl_c_super_lu_smp_factor *1u_factor supplied,
IMSL RETURN SPARSE LU FACTOR, Imsl_c_super_lu_smp_factor *1u_factor returned,
IMSL CONDITION, float *condition,
IMSL PIVOT GROWTH FACTOR, float *recip pivot growth,
IMSL FORWARD ERROR_ BOUND, float * ferr,
IMSL BACKWARD_ ERROR, float *berr,
IMSL RETURN USER, f complex x[],

0)

Optional Arguments

IMSL EQUILIBRATE, intequilibrate (Inputs)
Specifies if the input matrix A should be equilibrated before factorization.

equilibrate |Description

0 Do not equilibrate A before factorization.

1 Equilibrate A before factorization.

Default: equilibrate =0

= R{ng?mq\{q superlu_smp (complex) Chapter 1 Linear Systems 151

IMSL COLUMN ORDERING METHOD, Imsl_col_ordering method (Input)
The column ordering method used to preserve sparsity prior to the factorization process. Select the
ordering method by setting method to one of the following:

method Description

IMSL NATURAL Natural ordering, i.e.the column ordering of the input
matrix.

IMSL_MMD_ATA Minimum degree ordering on the structure of AT A.

IMSL_MMD_AT_PLUS_A |Minimum degree ordering on the structure of AT + A.

IMSL COLAMD Column approximate minimum degree ordering.

IMSL PERMC Use ordering given in permutation vector permc,
which is input by the user through optional argument
IMSL_COLPERM VECTOR. Vector permc is a permu-
tation of the numbers 0,1,...,n-1.

Default: method = IMSL COLAMD

IMSL COLPERM VECTOR,intpermc[] (Input)
An array of length n which defines the permutation matrix P. before postordering. This argument is

required if IMSL COLUMN ORDERING METHOD with method = IMSL PERMCIs used. Other-
wise, it is ignored.

IMSL TRANSPOSE, int transpose (Input)

Indicates if the problem Ax = b or one of the transposed problems A'x = b or Ax = b is to be solved.

transpose |Description

0 Solve Ax = b.

1 Solve A'x = b.
This option can be used in conjunction with either of
the options that supply the factorization.

2 Solve Ax = b.
This option can be used in conjunction with either of
the options that supply the factorization.

Default: transpose = 0.

IMSL_ITERATIVE_REFINEMENT, intrefine (Input)
Indicates if iterative refinement is desired.

= R{nggmq\{q superlu_smp (complex) Chapter 1 Linear Systems 152

refine Description

0 No iterative refinement.

1 Do iterative refinement.

Default: refine = 1.

IMSL FACTOR_SOLVE,int factsol (Input)
Indicates if the LU factorization, the solution of a linear system, or both are to be computed.

factsol Description

0 Compute the LU factorization of the input matrix A
and solve the system Ax = b.

1 Only compute the LU factorization of the input matrix
and return.

The LU factorization is returned via optional argument
IMSL RETURN SPARSE LU FACTOR.
Input argument b is ignored.

2 Only solve Ax = b given the LU factorization of A.
The LU factorization of A must be supplied via
optional argument

IMSL_SUPPLY SPARSE LU FACTOR.

Input argument a is ignored unless iterative refine-
ment, computation of the condition number, or
computation of the reciprocal pivot growth factor is
required.

Default: factsol =0.

IMSL DIAG PIVOT THRESH, floatdiag pivot thresh (Input)
Specifies the threshold used for a diagonal entry to be an acceptable pivot,
00 <diag pivot thresh < 1.0.
Default: diag_pivot thresh=1.0.

IMSL SNODE PREDICTION, int snode prediction (Input)
Indicates which scheme is used to predict the number of nonzeros in the L supernodes.

snode_predictio Description

n

0 Use static scheme for the prediction of the num-
ber of nonzeros in the L supernodes.

1 Use dynamic scheme for the prediction of the

number of nonzeros in the L supernodes.

Default: snode_prediction=0.

= R{nggmq\{q superlu_smp (complex) Chapter 1 Linear Systems 153

IMSL PERFORMANCE TUNING, intsp ienv[] (Input)
An array of length 8 containing parameters that allow the user to tune the performance of the matrix
factorization algorithm. The elements sp_ienv[i] must be positive for 1 =0,...,4 and different
from zero for i =5,6,7.

i Description of Sp_ienv[i]

0 The panel size.
Default: sp_ienv[0] =10.

1 The relaxation parameter to control supernode amalgama-
tion.

Default: sp_ienv[1] =5.

2 The maximum allowable size for a supernode.
Default: sp_ienv[2] =100.

3 The minimum row dimension to be used for 2D blocking.
Default: sp_ienv[3]=200.

4 The minimum column dimension to be used for 2D blocking,.
Default: sp_ienv[4] = 40.

5 The size of the array nzval to store the values of the L
supernodes. A negative number represents the fills growth
factor, i.e. the product of its absolute magnitude and the
number of nonzeros in the original matrix A will be used to
allocate storage. A positive number represents the number
of nonzeros for which storage will be allocated.

This element of array sp_ienv is used only if a dynamic
scheme for the prediction of the sizes of the L supernodes is
used, i.e. if snode prediction=1.

Default: sp_ienv[5] =-20.

6 The size of the arrays rowind and nzval to store the col-
umns in U. A negative number represents the fills growth
factor, i.e. the product of its absolute magnitude and the
number of nonzeros in the original matrix A will be used to
allocate storage. A positive number represents the number
of nonzeros for which storage will be allocated.

Default: sp_ienv[6] =-20.

7 The size of the array rowind to store the subscripts of the L
supernodes. A negative number represents the fills growth
factor, i.e. the product of its absolute magnitude and the
number of nonzeros in the original matrix A will be used to
allocate storage. A positive number represents the number
of nonzeros for which storage will be allocated.

Default: sp_ienv[7] =-10.

IMSL CSC FORMAT, intHB col ptr[],intHB row ind[],fcomplex HB values[] (Input)
Accept the coefficient matrix in compressed sparse column (CSC) format, as described in the
Compressed Sparse Column (CSC) Format section of the “Introduction” chapter of this manual.

IMSL SUPPLY SPARSE LU FACTOR,Imsl_c_super_lu_smp_factor *1u_factor supplied
(Input)
The address of a structure of type Imsl_c_super_lu_smp_factor containing the LU factors of the input

= R{nggmq\{q superlu_smp (complex) Chapter 1 Linear Systems

154

matrix computed with the IMSL RETURN SPARSE LU FACTOR option. See the Description sec-
tion for a definition of this structure. To free the memory allocated within this structure, use function

imsl c superlu smp factor free.

IMSL RETURN SPARSE LU FACTOR, Imsl_c_super_lu_smp_factor *1u_factor returned
(Output)
The address of a structure of type Imsl_c_super_lu_smp_factor containing the LU factorization of the
input matrix. See the Description section for a definition of this structure. To free the memory allo-

cated within this structure, use function ims1l c_superlu smp factor free.

IMSL CONDITION, float *condition (Output)
The estimate of the reciprocal condition number of matrix A after equilibration (if done).

IMSL PIVOT GROWTH FACTOR, float *recip pivot growth (Output)
The reciprocal pivot growth factor:

m}n{ H(PrDrADcPC>jHOO/ I Ujuw}.
If recip pivot growth is much less than 1, the stability of the LU factorization could be poor.

IMSL FORWARD ERROR BOUND, float *ferr (Output)
The estimated forward error bound for the solution vector x. This option requires argument
IMSL ITERATIVE REFINEMENT setto 1.

IMSL BACKWARD_ ERROR, float *berr (Output)
The componentwise relative backward error of the solution vector x. This option requires argument
IMSL ITERATIVE REFINEMENT setto 1.

IMSL RETURN USER, fcomplex x[] (Output)
A user-allocated array of length n containing the solution x of the linear system.

Description

The steps ims1 ¢ superlu_smp uses to solve linear systems are identical to the steps described in the doc-

umentation of the serial version ims1 c_ superlu.

Function ims1 ¢ superlu smp uses a supernodal storage scheme for the LU factorization of matrix A. In
contrast to the sequential version, the consecutive columns and supernodes of the L and U factors might not be
stored contiguously in memory. Thus, in addition to the pointers to the beginning of each column or supernode,

= Rogygmq\{q superlu_smp (complex) Chapter 1 Linear Systems

155

also pointers to the end of each column or supernode are needed. The factorization is contained in structure
Imsl_c_super_lu_smp_factor and its two sub-structures Ims/_c_hbp_format and Imsl_c_scp_format. Following is a
short description of these structures:

Table 1.4 — Structure Ims1 c _hbp format

Parameter Data Type Description

nnz int The number of nonzeros in the matrix.
nzval f complex = |Array of nonzero values packed by column.
rowind int * Array of row indices of the nonzeros.
colbeg int x Array of size ncol+1; colbeg[j] stores the

location in nzval[] and rowind[], which
starts column j. Element colbeg[ncol]
points to the first free location in arrays
nzval[] and rowind[].

colend int * Array of size ncol; colend[]] stores the
location in nzval[] and rowind[], whichis
one past the last element of column 5.

Table 1.5 — Structure Ims1l ¢ scp format

Parameter Data Type Description

nnz int The number of nonzeros in the supernodal
matrix.

nsuper int The number of supernodes minus one.

nzval f complex = |Array of nonzero values packed by column.

nzval colbeg int * Array of size ncol+1; nzval colbeg[]]

points to the beginning of column j in
nzvall[].Entrynzval colbeg[ncol]
points to the first free location in nzval[].

nzval colend int x Array of size ncol;nzval colend[j] points
to one past the last element of column 5 in
nzvall[].

rowind int * Array of compressed row indices of the rect-

angular supernodes.

rowind colbeg int * Array of size ncol+1; rowind colbeg[3j]
points to the beginning of column j in
rowind[].Element rowind colbeg[ncol]
points to the first free location in rowind[].

rowind colend int * Array of size ncol; rowind colend[j]
points to one past the last element of column
Jinrowind[].

col to sup int * Array of size ncol+1; col to sup[j] isthe
supernode number to which column 3
belongs. Only the first ncol entries in
col_to_supl] are defined.

= R{ng?mq\{q superlu_smp (complex) Chapter 1 Linear Systems 156

Table 1.5 — Structure Ims1 c scp format

Parameter Data Type Description

sup_to_colbeg int * Array of size ncol+1; sup_to_colbeg[s]
points to the first column of the s-th super-
node; only the first nsuper+1 locations of this
array are used.

sup_to colend int * Array of size ncol; sup_to_colend[s]
points to one past the last column of the s-th
supernode. Only the first nsuper+1 locations
of this array are used.

Table 1.6 — Structure Ims1 c super lu smp factor

Parameter Data Type Description

nrow int The number of rows of matrix A.
ncol int The number of columns of matrix A.
equilibration method int The method used to equilibrate A:

0 - No equilibration.

1 - Row equilibration.

2 - Column equilibration.

3 - Both row and column equilibration.

rowscale float = Array of size nrow containing the row
scale factors for A.

columnscale float = Array of size ncol containing the col-
umn scale factors for A.

rowperm int * Row permutation array of size nrow
describing the row permutation matrix
P..

colperm int * Column permutation array of size ncol
describing the column permutation
matrix Pe.

U Imsl_c_hbp_format * The part of the U factor of A outside the

supernodal blocks, stored in Harwell-
Boeing format.

L Imsl_c_scp_format * The L factor of A, stored in supernodal
format as block lower triangular matrix.

Structure Imsl_z_super_lu_smp_factor and its two sub-structures are defined similarly by replacing float with dou-
ble, f complex with d_complex, Imsl_c_hbp_format with Ims/_z_hbp_format, and Ims|_c_scp_format with
Imsl_z_scp_format in their respective definitions.

In contrast to the sequential version, the numerical factorization phase of the LU decomposition is parallelized.
Since a dynamic memory expansion as in the serial case is difficult to implement for the parallel code, the esti-
mated sizes of array rowind for the L and of arrays rowind and nzval for the U factor (see structures
Imsl_c_scp_format and Ims/_c_hbp_format above) must be predetermined by the user via elements 6 and 7 of the
performance tuning array sp_ienv.

= ROQEJ?WH\{E: superlu_smp (complex) Chapter 1 Linear Systems

157

In order to ensure that the columns of each L supernode are stored contiguously in memory, a static or dynamic
prediction scheme for the size of the L supernodes can be used. The static version, which function

imsl c superlu_ smp uses by default, exploits the observation that for any row permutation P in PA = LU,
the nonzero structure of L is contained in that of the Householder matrix H from the Householder sparse QR fac-
torization A = QR. Furthermore, it can be shown that each fundamental supernode in L is always contained in a
fundamental supernode of H. Therefore, the storage requirement for the L supernodes and array nzval inthe L
factor respectively can be estimated and allocated prior to the factorization based on the size of the H super-
nodes. The algorithm used to compute the supernode partition and the size of the supernodes in H is almost
linear in the number of nonzeros of matrix A.

In practice, the above static prediction scheme is quite tight for most problems. However, if the number of nonze-
ros in H greatly exceeds the number of nonzeros in L, the user can try a dynamic prediction scheme by setting
optional argument IMSL SNODE PREDICTION to 1. This scheme still uses the supernode partition in H, but
dynamically searches the supernodal graph of L to obtain a much tighter upper bound for the required storage.
Use of the dynamic scheme requires the user to define the size of array nzval in the L factor via element 5 of
the performance tuning array sp_ienv.

For a complete description of the parallel algorithm, see Demmel et al. (1999¢).

Copyright (c) 2003, The Regents of the University of California, through Lawrence Berkeley National Laboratory
(subject to receipt of any required approvals from U.S. Dept. of Energy)

All rights reserved.

Redistribution and use in source and binary forms, with or without modification, are permitted provided that the
following conditions are met:

(1) Redistributions of source code must retain the above copyright notice, this list of conditions and the following
disclaimer.

(2) Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the fol-
lowing disclaimer in the documentation and/or other materials provided with the distribution.

(3) Neither the name of Lawrence Berkeley National Laboratory, U.S. Dept. of Energy nor the names of its contrib-
utors may be used to endorse or promote products derived from this software without specific prior written
permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS “AS IS" AND ANY EXPRESS OR
IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND
FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CON-
TRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF
USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY
WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

= Rogygmq\{q superlu_smp (complex) Chapter 1 Linear Systems 158

Examples

Example 1

The LU factorization of the sparse complex 6x6 matrix

is computed. Let

so that

and

[10+ 7i 0
0 3+2i
0 0
—2—4i 0
—5+4i 0
| —1+12i —2+38i

0
-3
4+2i
0
0
0

0
—1+2i
0
1+6i
=5
0

0

0

0
—1+3i
12 +2i

0

y := (1+i, 2+2i, 3+3i, 4+4i, 5+5i, 6+6i)

0
0
0
0

~7+7i
347

b := Ay = (3+17i, ~19+5i, 6+18i, -38+32i, -63+49i, -57+83i)T
by == Aly = (-112+54i, -58+46i, 12/, -51+5i, 34+78i, ~94+60i)"

b2:=AHy=(54—112L46—58L12,5—51L78+34L60—94DT

The LU factorization of A is used to solve the sparse complex linear systems Ax=b, A'x=b, and A"x=b.

#include <imsl.h>

int main () {

Imsl c sparse elem a[] = {0, 0, {10.0, 7.0},
1, 1, {3.0, 2.0},
1, 2, {-3.0, 0.0},
1, 3, {-1.0, 2.0},
2, 2, {4.0, 2.0},
3, 0, {-2.0, -4.0},
3, 3, {1.0, 6.0},
3, 4, {-1.0, 3.0},
4, 0, {-5.0, 4.0},
4, 3, {-5.0, 0.0},
4, 4, {12.0, 2.0},
4, 5, {-7.0, 7.0},
5, 0, {-1.0, 12.0},
5, 1, {-2.0, 8.0},
5, 5, {3.0, 7.0}};
f complex b[] = {{3.0, 17.0}, {-19.0, 5.0}, {6.0,
{-38.0, 32.0}, {-63.0, 49.0}, {-57.0, 83.01}};

18.0},

=RogueWave

superlu_smp (complex)

Chapter 1 Linear Systems

159

f complex bl[] {{-112.0,54.0}, {-58.0,46.0}, {0.0,12.0},
{-51.0,5.0}, {34.0,78.0}, {-94.0,60.0}1};

f complex b2[] = {{54.0,-112.0}, {46.0, -58.0}, {12.0, 0.0},
{5.0, -51.0}, {78.0, 34.0}, {60.0, -94.0}};

int n = 6, nz = 15;
f complex *x = NULL;

x = imsl ¢ superlu smp (n, nz, a, b, 0);
imsl ¢ write matrix ("solution to A*x = b", n, 1, x, 0);
imsl free (x);

x = imsl c superlu smp (n, nz, a, bl, IMSL TRANSPOSE, 1, 0);
imsl c write matrix ("solution to A"T*x = bl", n, 1, x, 0);
imsl free (x);

x = imsl c superlu smp (n, nz, a, b2, IMSL TRANSPOSE, 2, 0);
imsl ¢ write matrix ("solution to A"H*x = b2", n, 1, x, 0);
imsl free (x);

Output
solution to A*x = Db

1 1, 1)
2 (2, 2)
3 (3, 3)
4 | 4, 4)
5 (5, 5)
6 (6, 6)

solution to A"T*x = bl
1 1, 1)
2 (2, 2)
3 (3, 3)
4 | 4, 4)
5 | 5, 5)
6 (6, 6)

solution to A"H*x = b2
1 1, 1)
2 (2, 2)
3 3, 3)
4 | 4, 4)
5 5, 5)
6 (6 6)

~

= R{ng?mq\{q superlu_smp (complex) Chapter 1 Linear Systems 160

Example 2

This example uses the matrix A = E(1000,10) to show how the LU factorization of A can be used to solve a linear
system with the same coefficient matrix A but different right-hand side. Maximum absolute errors are printed.
After the computations, the space allocated for the LU factorization is freed via function

imsl c superlu smp factor free

#include <imsl.h>
#include <stdlib.h>
#include <stdio.h>

int main ()
{

Imsl ¢ sparse elem *a = NULL;

Imsl ¢ super lu smp factor lu factor;

f complex *b = NULL, *x = NULL, *mod five = NULL, *mod ten = NULL;

float error factor solve, error solve;

int n = 1000, ¢ = 10;

int i, nz, index;

/* Get the coefficient matrix */

a = imsl c generate test coordinate (n, ¢, &nz, 0);

/* Set two different predetermined solutions */

mod five = (f complex*) malloc (n*sizeof (*mod five));

mod ten = (f complex*) malloc (n*sizeof (*mod ten));

for (i=0; 1i<n; 1i++) {
mod five[i] = imsl cf convert ((float) (i % 5), 0.0);
mod ten[i] = imsl cf convert ((float) (i % 10), 0.0);

}

/* Choose b so that x will approximate mod five */

b = (f complex *) imsl ¢ mat mul rect coordinate ("A*x",
IMSL A MATRIX, n, n, nz, a,
IMSL X VECTOR, n, mod five,

0) 7

/* Solve Ax = b */

x = imsl c superlu smp (n, nz, a, b,
IMSL RETURN SPARSE LU FACTOR, &lu factor,
0);

/* Compute max absolute error */

error_ factor solve = imsl ¢ vector norm (n, X,

IMSL SECOND VECTOR, mod five,
IMSL INF NORM, &index,
0);
free (mod five);
imsl free (b);
imsl free (x);
/* Get new right hand side -- b = A * mod ten */
b = (f complex *) imsl ¢ mat mul rect coordinate ("A*x",
IMSL A MATRIX, n, n, nz, a,
IMSL X VECTOR, n, mod ten,
0)7

= R{ng?mq\{q superlu_smp (complex) Chapter 1 Linear Systems 161

/* Use the previously computed factorization to solve Ax = b */
x = imsl ¢ superlu smp (n, nz, a, b,
IMSL SUPPLY SPARSE LU FACTOR, &lu factor,
IMSL FACTOR SOLVE, 2,
0) 7
error solve = imsl ¢ vector norm (n, X,
IMSL SECOND VECTOR, mod ten,
IMSL INF NORM, &index,
0);
free (mod ten);
imsl free (b);
imsl free (x);
imsl free (a);
/* Free sparse LU structure */
imsl c superlu smp factor free (&lu factor);
/* Print errors */

printf ("absolute error (factor/solve) = %e\n",
error factor solve);
printf ("absolute error (solve) = %e\n", error_solve);
}
Output
absolute error (factor/solve) = 9.581556e-007
absolute error (solve) = 2.017572e-006

Warning Errors

IMSL ILL CONDITIONED The input matrix is too ill-conditioned. An estimate of
the reciprocal of its L1 condition number is
“rcond” = #. The solution might not be accurate.

Fatal Errors

IMSL SINGULAR MATRIX The input matrix is singular.

= R{nggmq\{q superlu_smp (complex) Chapter 1 Linear Systems 162

in_sol_posdef_coordinate

Solves a sparse real symmetric positive definite system of linear equations A = b. Using optional arguments, any
of several related computations can be performed. These extra tasks include returning the symbolic factorization
of A, returning the numeric factorization of A, and computing the solution of Ax = b given either the symbolic or
numeric factorizations.

Synopsis
#include <imsl.h>
float *imsl f 1in sol posdef coordinate (intn,intnz, Imslf sparse_elem *a, float *b, .., 0)
void ims1l free symbolic_ factor (ImsL_symbolic factor *sym factor)
void imsl f free numeric factor (Imslf numeric_factor *num factor)

The type double functions are ims1 d 1lin sol posdef coordinate and

imsl d free numeric factor.

Required Arguments

intn (Input)
Number of rows in the matrix.

intnz (Input)
Number of nonzeros in lower triangle of the matrix.

Imsl_f sparse_elem *a (Input)
Vector of length nz containing the location and value of each nonzero entry in the lower triangle of
the matrix.

float *b (Input)
Vector of length n containing the right-hand side.

Return Value

A pointer to the solution x of the sparse symmetric positive definite linear system Ax = b. To release this space,
use imsl free. If no solution was computed, then NULL is returned.

Synopsis with Optional Arguments
#include <ims1l.h>

float *imsl f 1in sol posdef coordinate (intn,intnz, Imslf sparse_elem *a, float *b,

= R{nggmq\{q lin_sol_posdef_coordinate Chapter 1 Linear Systems 163

IMSL RETURN SYMBOLIC FACTOR,Imsl_symbolic_factor *sym factor,
IMSL SUPPLY SYMBOLIC FACTOR,Imsl_symbolic_factor *sym factor,
IMSL SYMBOLIC FACTOR ONLY,

IMSL RETURN NUMERIC FACTOR, Imslf numeric_factor *num_ factor,
IMSL SUPPLY NUMERIC_ FACTOR, Imslf numeric_factor *num_ factor,
IMSL NUMERIC FACTOR ONLY,

IMSL SOLVE ONLY,

IMSL MULTIFRONTAL FACTORIZATION,

IMSL RETURN USER, floatx[],

IMSL SMALLEST DIAGONAL ELEMENT, float *small element,

IMSL LARGEST DIAGONAL ELEMENT, float *largest element,
IMSL NUM NONZEROS IN FACTOR,int *fnum nonzeros,

IMSL CSC_FORMAT, int *col ptr,int *row_ind, float *values,

0)

Optional Arguments

IMSL RETURN SYMBOLIC FACTOR, /msl_symbolic_factor *sym factor (Output)
A pointer to a structure of type Imsl_symbolic_factor containing, on return, the symbolic factorization
of the input matrix. A detailed description of the Imsl_symbolic_factor structure is given in the follow-
ing table:

= R{ng?mq\{q lin_sol_posdef_coordinate Chapter 1 Linear Systems 164

Parameter Data Type |Description

nzsub int * = A pointer to an array containing the com-
pressed row subscripts of the non-zero off-
diagonal elements of the Cholesky factor.

xnzsub int x* A pointer to an array of length n + 1 containing
indices for *nzsub. The row subscripts for the
non-zeros in column j of the Cholesky factor
are stored consecutively beginning with
(*nzsub) [(*xnzsub) [§]1].

maxsub int The number of elements in array *nzsub that
are used as subscripts. Note that the size of
*nzsub can be larger than maxsub.

x1lnz int ** A pointer to an array of length n + 1 containing
the starting and stopping indices to use to
extract the non-zero off-diagonal elements
from array *alnz (For a description of alnz,
see the description section of optional argu-
ment IMSL_RETURN NUMERIC FACTOR). For
column j of the factor matrix, the starting and
stopping indices of *alnz are stored in
(*x1lnz) [§] and (*x1nz) [§ + 1]
respectively.

maxlnz int The number of non-zero off-diagonal elements
in the Cholesky factor.

perm int x* A pointer to an array of length n containing the
permutation vector.

invp int ** A pointer to an array of length n containing the
inverse permutation vector.

multifrontal space int The required size of working storage for the
stack of frontal matrices. If no multifrontal fac-
torization is used, then this variable is set to
Zero.

To free the memory allocated within this structure, use function

imsl free symbolic factor.

IMSL SUPPLY SYMBOLIC FACTOR,/msl_symbolic_factor *sym factor (Input)
A pointer to a structure of type Imsl_symbolic_factor. This structure contains the symbolic factoriza-
tion of the input matrix computed by ims1 f lin sol posdef coordinate withthe
IMSL RETURN SYMBOLIC FACTOR option. The structure is described in the
IMSL RETURN SYMBOLIC FACTOR optional argument description. To free the memory allocated
within this structure, use function ims1l free symbolic factor.

IMSL SYMBOLIC FACTOR ONLY,
Compute the symbolic factorization of the input matrix and return. The argument b is ignored.

= ROQEJ?WH\{E: lin_sol_posdef_coordinate Chapter 1 Linear Systems

165

IMSL RETURN NUMERIC FACTOR, Imslf numeric_factor *num factor (Output)
A pointer to a structure of type Imsl_f_numeric_factor containing, on return, the numeric factorization
of the input matrix. A detailed description of the Imsl_f numeric_factor structure is given in the fol-
lowing table:

Parameter Data Type Description

nzsub int x= A pointer to an array containing the row subscripts for the
non-zero off-diagonal elements of the Cholesky factor. This
array is allocated to be of length nz but all elements of the
array may not be used.

xnzsub int = A pointer to an array of length n + 1 containing indices for
nzsub. The row subscripts for the non-zeros in column j of
the cholesky factor are stored consecutively beginning with
nzsub [xnzsub[J]].

x1lnz int *x A pointer to an array of length n + 1 containing the starting
and stopping indices to use to extract the non-zero off-
diagonal elements from array alnz. For column j of the fac-
tor matrix, the starting and stopping indices of alnz are
stored in x1nz[j] and x1nz[j + 1] respectively.

alnz float »* A pointer to an array containing the non-zero off-diagonal
elements of the Cholesky factor.

perm int x= A pointer to an array of length n containing the permuta-
tion vector.

diag float »* A pointer to an array of length n containing the diagonal
elements of the Cholesky factor.

Let L be the Cholesky factor of @ and num nonzeros be the number of nonzeros in L. In the struc-
ture described above, the diagonal elements of L are stored in diag. The off-diagonal non-zero
elements of L are stored in alnz. The starting and stopping indices to use to extract the non-zero
elements of L from alnz for columnjare stored in x1nz [j] and x1nz [j + 1] respectively. The row
indices of the non-zero elements of L are contained in nzsub. xnzsub [/] contains the index of
nzsub from which one should start to extract the row indices for L for column i. This is best illus-
trated by the following code fragment which reconstructs the lower triangle of the factor matrix L
from the components of the above structure:

Imsl f numeric factor numfctr;

for (i = 0; 1 < n; i++){
L{i][i] = (*numfctr.diag) [i];
if ((*numfctr.xlnz) [i] > (num nonzeros-n)) continue;
start = (*numfctr.xlnz) [i]-1;
stop = (*numfctr.xlnz) [i+1]-1;
k = (*numfctr.xnzsub) [1]-1;

for (j = start; j < stop; j++){

= ROQ}J?WH\{E: lin_sol_posdef_coordinate Chapter 1 Linear Systems 166

L[(*numfctr.nzsub) [k]-1][i] = (*numfctr.alnz) [J];
k++;

}

To free the memory allocated within this structure, use function

imsl f free numeric factor.

IMSL SUPPLY NUMERIC FACTOR, /mslf numeric_factor *num factor (Input)
A pointer to a structure of type Imsl_f numeric_factor. This structure contains the numeric factoriza-
tion of the input matrix computed by ims1 £ 1in sol posdef coordinate withthe
IMSL RETURN NUMERIC FACTOR option. The structure is described in the
IMSL RETURN NUMERIC FACTOR optional argument description.
To free the memory allocated within this structure, use function

imsl f free numeric factor.

IMSL NUMERIC FACTOR_ONLY,
Compute the numeric factorization of the input matrix and return. The argument b is ignored.

IMSL SOLVE_ONLY,
Solve Ax = b given the numeric or symbolic factorization of A. This option requires the use of either
IMSL SUPPLY NUMERIC FACTORoOr IMSL SUPPLY SYMBOLIC FACTOR

IMSL MULTIFRONTAL FACTORIZATION,

Perform the numeric factorization using a multifrontal technique. By default, a standard factorization
is computed based on a sparse compressed storage scheme.

IMSL RETURN USER, float x[] (Output)
A user-allocated array of length n containing the solution x.

IMSL_SMALLEST_DIAGONAL_ELEMENTZﬂoat*Small_element (Output)
A pointer to a scalar containing the smallest diagonal element that occurred during the numeric fac-
torization. This option is valid only if the numeric factorization is computed during this call to
imsl f lin sol posdef coordinate

IMSL LARGEST DIAGONAL ELEMENT, float *large element (Output)
A pointer to a scalar containing the largest diagonal element that occurred during the numeric factor-
ization. This option is valid only if the numeric factorization is computed during this call to
imsl f lin sol posdef coordinate

IMSL NUM NONZEROS IN FACTOR,int *num nonzeros (Output)
A pointer to a scalar containing the total number of nonzeros in the factor.

IMSL CSC_FORMAT,int *col ptr,int *row ind, float *values (Input)
Accept the coefficient matrix in Compressed Sparse Column (CSC) Format. See the “Matrix Storage

Modes” section of the “Introduction” at the beginning of this manual for a discussion of this storage
scheme.

= Rogygmq\{q lin_sol_posdef_coordinate Chapter 1 Linear Systems

167

Description

The function imsl f 1in sol posdef coordinate solves asystem of linear algebraic equations having
a sparse symmetric positive definite coefficient matrix A. In this function’s default usage, a symbolic factorization
of a permutation of the coefficient matrix is computed first. Then a numerical factorization is performed. The
solution of the linear system is then found using the numeric factor.

The symbolic factorization step of the computation consists of determining a minimum degree ordering and then
setting up a sparse data structure for the Cholesky factor, L. This step only requires the “pattern” of the sparse
coefficient matrix, i.e., the locations of the nonzeros elements but not any of the elements themselves. Thus, the
val fieldinthe Ims1l f sparse elemstructure isignored. If an application generates different sparse sym-
metric positive definite coefficient matrices that all have the same sparsity pattern, then by using
IMSL_RETURN SYMBOLIC FACTORand IMSL SUPPLY SYMBOLIC_ FACTOR, the symbolic factorization
need only be computed once.

Given the sparse data structure for the Cholesky factor L, as supplied by the symbolic factor, the numeric factor-
ization produces the entries in L so that

PAPT = 11T

Here P is the permutation matrix determined by the minimum degree ordering.

The numerical factorization can be carried out in one of two ways. By default, the standard factorization is per-
formed based on a sparse compressed storage scheme. This is fully described in George and Liu (1981).
Optionally, a multifrontal technique can be used. The multifrontal method requires more storage but will be
faster in certain cases. The multifrontal factorization is based on the routines in Liu (1987). For a detailed descrip-
tion of this method, see Liu (1990), also Duff and Reid (1983, 1984), Ashcraft (1987), Ashcraft et al. (1987), and Liu
(1986, 1989).

If an application requires that several linear systems be solved where the coefficient matrix is the same but the
right-hand sides change, the options IMSL RETURN NUMERIC FACTOR and

IMSL SUPPLY NUMERIC FACTOR can be used to precompute the Cholesky factor. Then the

IMSL SOLVE_ ONLY option can be used to efficiently solve all subsequent systems.

Given the numeric factorization, the solution x is obtained by the following calculations:

LYl =Pb
LTy, =y
x=Ply,

The permutation information, P, is carried in the numeric factor structure.

= Rogygmq\{q lin_sol_posdef_coordinate Chapter 1 Linear Systems 168

Examples

Example 1

As an example consider the 5 x 5 coefficient matrix:

10 0 1 0 2
0 20 0 0 3
a=(1 0 30 4 O
0 0 4 40 5
2 3 0 5 50

Let x" = (5, 4, 3,2, 1) so that Ax = (55, 83, 103, 97, 82)". The number of nonzeros in the lower triangle of Aisnz =
10. The sparse coordinate form for the lower triangle is given by the following:

row O 1 2 2 3 3 4 4 4 4
col 0 1 0 2 2 3 0 1 3 4
val 10 20 1 30 4 40 2 3 5 50

Since this representation is not unique, an equivalent form would be as follows:

row 3 4 4 4 0 1 2 2 3 4
col 3 0 1 3 0 1 0 2 2 4
val 40 2 3 5 10 20 1 30 4 50

#include <imsl.h>

int main ()
{
Imsl f sparse elem a[] =
{0, 0, 10.0,

1, 1, 20.0,
2, 0, 1.0,
2, 2, 30.0,
3, 2, 4.0,
3, 3, 40.0,
4, 0, 2.0,
4, 1, 3.0,
4, 3, 5.0,
4, 4, 50.0};

float DbJ[] = {55.0, 83.0, 103.0, 97.0, 82.0};

int n = 5;

int nz = 10;

float *x;

x = imsl f lin sol posdef coordinate (n, nz, a, b,
0);

= ROQ}J?WH\{E: lin_sol_posdef_coordinate Chapter 1 Linear Systems 169

imsl f write matrix
0);
imsl free (x);

}

Output
1 2
5 4
Example 2

In this example, set A = E(2500, 50). Then solve the system Ax = b and return the numeric factorization resulting

("solution"™, 1, n, x,

solution
3 4 5
3 2 1

from that call. Then solve the system Ax = b, using the numeric factorization just computed. The ratio of execu-

tion time is printed. Be aware that timing results are highly machine dependent.

#include <imsl.h>
#include <stdio.h>

int main ()
{
Imsl f sparse elem
Imsl f numeric factor
float
float
float
float
int
int
int
double
double

ic =
n:

50;
ic*ic;

*a;
numeric factor;
*b 1;

*b 2;

*x 1;

*xX 25

n;

ic;

nz;

time 1;

time 2;

/* Generate two right hand sides */

b 1 =

o

) ;

b 2 = imsl f random uniform

(@]

) ;

imsl f random uniform (n*sizeof(*b 1),

(n*sizeof (*b_2),

/* Build coefficient matrix a */

a:

imsl f generate test coordinate (n,

ic, é&nz,

IMSL SYMMETRIC STORAGE,

0);

/* Now solve Ax 1 = Db

factorization */

1 and return the numeric

=RogueWave

lin_sol_posdef_coordinate

Chapter 1 Linear Systems

170

time 1 = imsl ctime ();

x 1 = imsl f lin sol posdef coordinate (n, nz, a, b 1,
IMSL RETURN NUMERIC FACTOR, é&numeric factor,
0);

time 1 = imsl ctime () - time 1;

/* Now solve Ax 2 = b 2 given the numeric
factorization */
time 2 = imsl ctime ();

x 2 = imsl f lin sol posdef coordinate (n, nz, a, b 2,
IMSL SUPPLY NUMERIC FACTOR, é&numeric factor,
IMSL SOLVE ONLY,
0);

time 2 = imsl ctime () - time 2;

printf("time 2/time 1 = $1f\n", time 2/time 1);
}

Output

time 2/time 1 = 0.037037

= ROQEJ?WH\{E: lin_sol_posdef_coordinate Chapter 1 Linear Systems 171

in_sol_posdef_coordinate (complex)

Solves a sparse Hermitian positive definite system of linear equations Ax = b. Using optional arguments, any of
several related computations can be performed. These extra tasks include returning the symbolic factorization of
A, returning the numeric factorization of A, and computing the solution of Ax = b given either the symbolic or
numeric factorizations.

Synopsis
#include <ims1.h>

fcomplex *imsl c 1lin sol posdef coordinate (intn,intnz, Imsl_c_sparse_elem *a,
f.complex *b, ..., 0)

void ims1l free symbolic factor (ImsL_symbolic_factor *sym factor)
void imsl ¢ free numeric factor (Imsl.c_numeric_factor *num_ factor)

The type d_complex functions are imsl z lin sol posdef coordinate and

imsl z free numeric factor.

Required Arguments

int n (Input)
Number of rows in the matrix.

intnz (Input)
Number of nonzeros in the lower triangle of the matrix.

Imsl_c_sparse_elem *a (Input)
Vector of length nz containing the location and value of each nonzero entry in lower triangle of the
matrix.

f.complex *b (Input)
Vector of length n containing the right-hand side.

Return Value

A pointer to the solution x of the sparse Hermitian positive definite linear system Ax = b. To release this space, use
imsl free.If no solution was computed, then NULL is returned.

Synopsis with Optional Arguments

#include <imsl.h>

= ROQEJ?\MQ\{E: lin_sol_posdef_coordinate (complex) Chapter 1 Linear Systems 172

fcomplex *imsl c 1lin sol posdef coordinate (intn,intnz, Imsl_c_sparse_elem *a,
f.complex *D,

IMSL RETURN SYMBOLIC FACTOR,/msl_symbolic_factor *sym factor,
IMSL SUPPLY SYMBOLIC FACTOR,/msl_symbolic_factor *sym factor,
IMSL SYMBOLIC_ FACTOR ONLY,

IMSL RETURN NUMERIC FACTOR, /msl_c_numeric_factor *num_ factor,
IMSL SUPPLY NUMERIC FACTOR,/msl_c_numeric_factor *num_ factor,
IMSL NUMERIC FACTOR_ONLY,

IMSL SOLVE_ONLY,

IMSL MULTIFRONTAL FACTORIZATION,

IMSL RETURN USER, f.complex x[1],

IMSL SMALLEST DIAGONAL ELEMENT, float *small element,
IMSL_LARGEST_DIAGONAL_ELEMENT,f/oat *largest element,
IMSL NUM NONZEROS IN FACTOR, int *num_nonzeros,

IMSL CSC_FORMAT, int *col ptr, int *row ind, float *values,

0)

Optional Arguments

IMSL RETURN SYMBOLIC FACTOR,/msl_symbolic_factor *sym factor (Output)
A pointer to a structure of type Imsl_symbolic_factor containing, on return, the symbolic factorization
of the input matrix. A detailed description of the Imsl_symbolic_factor structure is given in the follow-
ing table:

= R{ng?mq\{q lin_sol_posdef_coordinate (complex) Chapter 1 Linear Systems 173

Parameter Data Type |Description

nzsub int *x A pointer to an array containing the com-
pressed row subscripts of the non-zero off-
diagonal elements of the Cholesky factor.

xnzsub int x* A pointer to an array of length n + 1 containing
indices for *nzsub. The row subscripts for the
non-zeros in column j of the Cholesky factor
are stored consecutively beginning with
(*nzsub) [(*xnzsub) [§]].

maxsub int The number of elements in array *nzsub that
are used as subscripts. Note that the size of
*nzsub can be larger than maxsub.

x1lnz int x* A pointer to an array of length n + 1 containing
the starting and stopping indices to use to
extract the non-zero off-diagonal elements
from array *alnz (For a description of alnz,
see the description section of optional argu-
ment IMSL_RETURN NUMERIC FACTOR). For
column j of the factor matrix, the starting and
stopping indices of *alnz are stored in
(*x1nz) [§] and (*x1nz) [§+1] respectively.

maxlnz int The number of non-zero off-diagonal elements
in the Cholesky factor.

perm int *x A pointer to an array of length n containing the
permutation vector.

invp int > A pointer to an array of length n containing the
inverse permutation vector.

multifrontal space int The required size of working storage for the
stack of frontal matrices. If no multifrontal fac-
torization is used, then this variable is set to
Zero.

To free the memory allocated within this structure, use function

imsl free symbolic factor.

IMSL SUPPLY SYMBOLIC FACTOR,Imsl_symbolic_factor *sym factor (Input)
A pointer to a structure of type Imsl_symbolic_factor. This structure contains the symbolic factoriza-
tion of the input matrix computed by ims1 ¢ lin sol posdef coordinate withthe
IMSL RETURN SYMBOLIC FACTOR option. The structure is described in the
IMSL RETURN SYMBOLIC FACTOR optional argument description. To free the memory allocated
within this structure, use function ims1 free symbolic factor.

IMSL SYMBOLIC FACTOR ONLY,
Compute the symbolic factorization of the input matrix and return. The argument b is ignored.

= ROQEJ?\MQ\{E: lin_sol_posdef_coordinate (complex) Chapter 1 Linear Systems

174

IMSL RETURN NUMERIC FACTOR, Imsl_c_numeric_factor *num factor (Output)
A pointer to a structure of type Imsl_c_numeric_factor containing, on return, the numeric factorization
of the input matrix. A detailed description of the Imsl_c_numeric_factor structure is given in the fol-
lowing table:

Parameter |Data Type Description

nzsub int ** A pointer to an array containing the row
subscripts for the non-zero off-diagonal
elements of the Cholesky factor. This
array is allocated to be of length nz but
all elements of the array may not be
used.

xnzsub int ** A pointer to an array of length n + 1 con-
taining indices for nzsub. The row
subscripts for the non-zeros in column j
of the Cholesky factor are stored con-
secutively beginning with

nzsub [xnzsub[j]].

x1lnz int ** A pointer to an array of length n + 1 con-
taining the starting and stopping indices
to use to extract the non-zero off-diago-
nal elements from array alnz. For
column j of the factor matrix, the start-
ing and stopping indices of alnz are
storedin xlnz[j] and x1lnz[j + 1]
respectively.

alnz f complex ** A pointer to an array containing the
non-zero off-diagonal elements of the
Cholesky factor.

perm int ** A pointer to an array of length n contain-
ing the permutation vector.

diag f complex ** A pointer to an array of length n contain-
ing the diagonal elements of the
Cholesky factor.

Let L be the Cholesky factor of @ and num_nonzeros be the number of nonzeros in L. In the struc-
ture described above, the diagonal elements of L are stored in diag. The off-diagonal non-zero
elements of L are stored in alnz. The starting and stopping indices to use to extract the non-zero
elements of L from alnz for columnj are stored in x1nz [j] and x1nz [j + 7] respectively. The row
indices of the elements of L which are non-zero are contained in nzsub. xnzsub [i] contains the
index of nzsub from which one should start to extract the row indices for L for column i. This is best
illustrated by the following code fragment which reconstructs the lower triangle of the factor matrix L
from the components of the above structure:

Imsl c numeric_ factor numfctr;

for (1 = 0; 1 < n; i++){

= R{ngg\ﬂh’ﬂ\{&: lin_sol_posdef_coordinate (complex) Chapter 1 Linear Systems

175

L[il[i] = (*numfctr.diag) [i];

if ((*numfctr.xlnz) [i] > (num nonzeros-n)) continue;

start = (*numfctr.xlnz) [i]-1;

stop = (*numfctr.xlnz) [i+1]-1;

k = (*numfctr.xnzsub) [1]-1;

for (j = start; j < stop; Jj++){
L[(*numfctr.nzsub) [k]-1][i] = (*numfctr.alnz) []];
k++;

}

To free the memory allocated within this structure, use function

imsl c free numeric factor.

IMSL SUPPLY NUMERIC FACTOR, Imsl_c_numeric_factor *num factor (Input)
A pointer to a structure of type Imsl_c_numeric_factor. This structure contains the numeric factoriza-
tion of the input matrix computed by ims1 ¢ 1in sol posdef coordinate withthe
IMSL RETURN NUMERIC FACTOR option. The structure is described in the
IMSL RETURN NUMERIC FACTOR optional argument desription.
To free the memory allocated within this structure, use function

imsl c free numeric factor.

IMSL NUMERIC FACTOR_ ONLY,

Compute the numeric factorization of the input matrix and return. The argument b is ignored.

IMSL_SOLVE_ONLY,

Solve Ax = b given the numeric or symbolic factorization of A. This option requires the use of either
IMSL SUPPLY NUMERIC FACTORoOr IMSL SUPPLY SYMBOLIC FACTOR

IMSL MULTIFRONTAL FACTORIZATION,

Perform the numeric factorization using a multifrontal technique. By default a standard factorization
is computed based on a sparse compressed storage scheme.

IMSL RETURN USER, fcomplex x[] (Output)
A user-allocated array of length n containing the solution x.

IMSL SMALLEST DIAGONAL ELEMENT, float *small element (Output)
A pointer to a scalar containing the smallest diagonal element that occurred during the numeric fac-
torization. This option is valid only if the numeric factorization is computed during this call to
imsl ¢ lin sol posdef coordinate

IMSL LARGEST DIAGONAL ELEMENT, float *large element (Output)
A pointer to a scalar containing the largest diagonal element that occurred during the numeric factor-
ization. This option is valid only if the numeric factorization is computed during this call to
imsl c lin sol posdef coordinate

= ROQEI?WH\{E: lin_sol_posdef_coordinate (complex) Chapter 1 Linear Systems

IMSL NUM NONZEROS IN FACTOR,int *num nonzeros (Output)
A pointer to a scalar containing the total number of nonzeros in the factor.

IMSL CSC_FORMAT,int *col ptr,int *row ind, float *values (Input)
Accept the coefficient matrix in Compressed Sparse Column (CSC) Format. See the “Matrix Storage
Modes” section of the “Introduction” at the beginning of this manual for a discussion of this storage
scheme.

Description

The function ims1 ¢ 1lin sol posdef coordinate solves a system of linear algebraic equations having
a sparse Hermitian positive definite coefficient matrix A. In this function’s default use, a symbolic factorization of a
permutation of the coefficient matrix is computed first. Then a numerical factorization is performed. The solution
of the linear system is then found using the numeric factor.

The symbolic factorization step of the computation consists of determining a minimum degree ordering and then
setting up a sparse data structure for the Cholesky factor, L. This step only requires the “pattern” of the sparse
coefficient matrix, i.e., the locations of the nonzeros elements but not any of the elements themselves. Thus, the
val fieldinthe Ims1l c sparse elemstructure is ignored. If an application generates different sparse Her-
mitian positive definite coefficient matrices that all have the same sparsity pattern, then by using

IMSL RETURN SYMBOLIC FACTORand IMSL SUPPLY SYMBOLIC FACTOR, the symbolic factorization
need only be computed once.

Given the sparse data structure for the Cholesky factor L, as supplied by the symbolic factor, the numeric factor-
ization produces the entries in L so that

PAPT = 111
Here P is the permutation matrix determined by the minimum degree ordering.
The numerical factorization can be carried out in one of two ways. By default, the standard factorization is per-
formed based on a sparse compressed storage scheme. This is fully described in George and Liu (1981).
Optionally, a multifrontal technigue can be used. The multifrontal method requires more storage but will be
faster in certain cases. The multifrontal factorization is based on the routines in Liu (1987). For a detailed descrip-

tion of this method, see Liu (1990), also Duff and Reid (1983, 1984), Ashcraft (1987), Ashcraft et al. (1987), and Liu
(1986, 1989).

If an application requires that several linear systems be solved where the coefficient matrix is the same but the
right-hand sides change, the options IMSL. RETURN NUMERIC FACTOR and

IMSL SUPPLY NUMERIC FACTOR can be used to precompute the Cholesky factor. Then the

IMSL SOLVE ONLY option can be used to efficiently solve all subsequent systems.

Given the numeric factorization, the solution x is obtained by the following calculations:
L.yl = Pb
H
Ly, =y

x=Ply,

= ROQEI?WH\{E: lin_sol_posdef_coordinate (complex) Chapter 1 Linear Systems 177

The permutation information, P, is carried in the numeric factor structure.

Examples

Example 1
As a simple example of default use, consider the following Hermitian positive definite matrix
2 —1+i 0

A=|-1-i 4 1+2i
0 1-2i 10

Let x" = (1 +4 2 +2i, 3 +3i)so that Ax = (-2 + 2i, 5 +15i, 36 + 28/). The number of nonzeros in the lower triangle
isnz =5.

#include <imsl.h>

int main ()

{

Imsl c sparse elem al[] = {0, 0, (2.0, 0.0},
1, 1, {4.0, 0.0},
2, 2, {10.0, 0.0},
1, 0, {-1.0, -1.0},
2, 1, {1.0, -2.0}};

f complex Db[] =
int n = 3;
int nz = 5;
f complex *x;

{{-2.0, 2.0}, {5.0, 15.0}, {36.0, 28.0}};

x = imsl ¢ lin sol posdef coordinate (n, nz, a, b, 0);
imsl ¢ write matrix ("Solution, x, of Ax = Db", n, 1, x, 0);

imsl free (x);

}

Output

Solution, x, of Ax = Db
1 1, 1)
2 (2, 2)
3 3, 3)

= R{ng?mq\{q lin_sol_posdef_coordinate (complex) Chapter 1 Linear Systems 178

Example 2

Set A = £(2500, 50). Then solve the system Ax = by and return the numeric factorization resulting from that call.
Then solve the system Ax = b, using the numeric factorization just computed. Absolute errors and execution time
are printed.

#include <imsl.h>
#include <stdio.h>

int main ()

{

Imsl c sparse elem *aj;

Imsl c numeric factor numeric factor;

f complex b 1[2500], b 2[2500], *x 1, *x 2;
int n, ic, nz, 1, index;

double time 1, time 2;

float *rand vec;

ic = 50;

n = ic*ic;

index = 0;

/* Generate two right hand sides */

rand vec = imsl f random uniform (4*n*sizeof (*rand vec),
0);
for (i=0; i<n; 1i++) {
b 1[i].re = rand vec[index++];
b 1[i].im = rand vec[index++];
b 2[i].re = rand vec[index++];
b 2[i].im = rand vec[index++];

/* Build coefficient matrix a */

a = imsl c generate test coordinate (n, ic, é&nz,
IMSL SYMMETRIC STORAGE,
0);

/* Now solve Ax 1 = b 1 and return the numeric factorization */

time 1 = imsl ctime ();

x 1 = imsl c lin sol posdef coordinate (n, nz, a, b 1,
IMSL RETURN NUMERIC FACTOR, é&numeric factor,
0);

time 1 = imsl ctime () - time 1;

/* Now solve Ax 2 = b 2 given the numeric factorization */
time 2 = imsl ctime ();

= R{ngg\ﬂh’ﬂ\{&: lin_sol_posdef_coordinate (complex) Chapter 1 Linear Systems

179

x 2 = imsl c¢ lin sol posdef coordinate (n, nz, a, b 2,
IMSL SUPPLY NUMERIC FACTOR, é&numeric factor,
IMSL SOLVE ONLY,
0);

time 2 = imsl ctime () - time 2;

printf("time 2/time 1 = $1f\n", time 2/time 1);
}

Output

time 2/time 1 = 0.096386

=RogueWave

lin_sol_posdef_coordinate (complex) Chapter 1 Linear Systems 180

sparse_cholesky_smp

ok OpenMP
PE S¢ (i B CE more. . .

more. ..

Computes the Cholesky factorization of a sparse real symmetric positive definite matrix A by an OpenMP paral-
lelized supernodal algorithm and solves the sparse real positive definite system of linear equations Ax = b.

Synopsis
#include <imsl.h>
float *ims1l f sparse cholesky smp (intn,intnz, Imslf sparse_elemal],floatb[], ..., 0)
void imsl free snodal symbolic factor (Imsl_snodal_symbolic_factor *sym factor)
void imsl f free numeric factor (Imslf numeric_factor *num factor)

The type double functions are ims1 d sparse cholesky smpand imsl d free numeric factor.

Required Arguments

int n (Input)
The order of the input matrix.

intnz (Input)
Number of nonzeros in the lower triangle of the matrix.

Imsl_f sparse_elem a[] (Input)
An array of length nz containing the location and value of each nonzero entry in the lower triangle of
the matrix.

floatb[] (Input)
An array of length n containing the right-hand side.

Return Value

A pointer to the solution x of the sparse symmetric positive definite linear system Ax = b. To release this space,
use imsl free. If no solution was computed, then NULL is returned.

= R{ng?mq\{q sparse_cholesky_smp Chapter 1 Linear Systems 181

Synopsis with Optional Arguments

#include <ims1.h>

float *ims1l f sparse cholesky smp (intn,intnz, Imslf sparse_elemal], floatb[],
IMSL CSC_FORMAT,intcol ptr[],introw ind[], float values|[],
IMSL PREORDERING, int preorder,
IMSL RETURN SYMBOLIC_ FACTOR, /msl_snodal_symbolic_factor *sym factor,
IMSL SUPPLY SYMBOLIC_ FACTOR, /msl_snodal_symbolic_factor *sym factor,
IMSL SYMBOLIC FACTOR ONLY,
IMSL RETURN NUMERIC FACTOR, Imsl_f numeric_factor *num_ factor,
IMSL SUPPLY NUMERIC FACTOR, Imsl_f numeric_factor *num factor,
IMSL NUMERIC FACTOR ONLY,
IMSL SOLVE_ONLY,
IMSL SMALLEST DIAGONAL ELEMENT, float *smal lest element,
IMSL LARGEST DIAGONAL ELEMENT, float *largest element,
IMSL NUM NONZEROS IN FACTOR,int *num nonzeros,
IMSL RETURN USER, float x[],

0)

Optional Arguments

IMSL CSC_FORMAT,intcol ptr[],introw ind[], floatvalues[] (Input)
Accept the coefficient matrix in compressed sparse column (CSC) format, as described in the
Compressed Sparse Column (CSC) Format section of the “Introduction” chapter of this manual.

IMSL PREORDERING, intpreorder (Input)
The variant of the Minimum Degree Ordering (MDO) algorithm used in the preordering of matrix A:

preorder Method

0 George and Liu's Quotient Minimum Degree
algorithm.
1 Avariant of George and Liu's Quotient Mini-

mum Degree algorithm using a
preprocessing phase and external degrees.

Default: preorder = 0.

= R{ng?mq\{q sparse_cholesky_smp Chapter 1 Linear Systems 182

IMSL RETURN_ SYMBOLIC FACTOR,Imsl_snodal_symbolic_factor *sym factor (Output)
A pointer to a structure of type Imsl_snodal_symbolic_factor containing, on return, the supernodal
symbolic factorization of the input matrix. A detailed description of the Imsl_snodal_symbolic_factor

structure is given in the following table:

Table 1.7 — Structure Ims1l snodal symbolic factor

Parameter

Data Type

Description

nzsub

int =

A pointer to an array containing the com-
pressed row subscripts of the non-zero off-
diagonal elements of the Cholesky factor.

xnzsub

int x*

A pointer to an array of length n+1 containing
indices for *nzsub. The row subscripts for the
non-zeros in column 5 of the Cholesky factor
are stored consecutively beginning with
(*nzsub) [(*xnzsub) [F]].

maxsub

int

The number of elements in array *nzsub that
are used as subscripts. Note that the size of
*nzsub can be larger than maxsub.

x1lnz

int x*

A pointer to an array of length n+1 containing
the starting and stopping indices to use to
extract the non-zero off-diagonal elements
from array *alnz (For a description of alnz,
see the description section of optional argu-
ment IMSL RETURN NUMERIC FACTOR). For
column 5 of the factor matrix, the starting and
stopping indices of *alnz are stored in
(*x1nz) [3] and (*x1nz) [j+1] respectively.

maxlnz

int

The number of non-zero off-diagonal elements
in the Cholesky factor.

perm

int x*

A pointer to an array of length n containing the
permutation vector.

invp

int =

A pointer to an array of length n containing the
inverse permutation vector.

multifrontal space

int

This variable is not used in the current
implementation.

nsuper

int

The number of supernodes in the Cholesky
factor.

snode

int x*

A pointer to an array of length n. Element
(*snode) [j] contains the number of the fun-
damental supernode to which column 7
belongs.

snode ptr

int x*

A pointer to an array of length nsuper+1 con-
taining the start column of each supernode.

nleaves

int

The number of leaves in the postordered elimi-
nation tree of the symmetrically permuted
input matrix A.

etree leaves

int ==

A pointer to an array of length nleaves+1
containing the leaves of the elimination tree.

=RogueWave

sparse_cholesky_smp Chapter 1 Linear Systems

183

To free the memory allocated within this structure, use function
imsl free snodal symbolic factor.

IMSL SUPPLY SYMBOLIC_ FACTOR, /msl_snodal_symbolic_factor *sym factor (Input)
A pointer to a structure of type Imsl_snodal_symbolic_factor. This structure contains the symbolic fac-
torization of the input matrix computed by ims1 f sparse cholesky smp withthe
IMSL RETURN SYMBOLIC FACTOR option. The structure is described in the
IMSL RETURN SYMBOLIC FACTOR optional argument description.
To free the memory allocated within this structure, use function
imsl free snodal symbolic factor.

IMSL SYMBOLIC FACTOR ONLY, (Input)

Compute the symbolic factorization of the input matrix and return. The argument b is ignored.

IMSL RETURN NUMERIC FACTOR, /mslf numeric_factor *num factor (Output)

A pointer to a structure of type Imsl_f numeric_factor containing, on return, the numeric factorization
of the input matrix. A detailed description of the Imsl_f numeric_factor structure is given in the
IMSL RETURN NUMERIC FACTOR optional argument description of function

imsl £ lin sol posdef coordinate. To free the memory allocated within this structure, use
function imsl f free numeric factor.

IMSL SUPPLY NUMERIC FACTOR, /mslf numeric factor *num factor (Input)
A pointer to a structure of type Imsl_f numeric_factor. This structure contains the numeric factoriza-
tion of the input matrix computed by ims1 f sparse cholesky smp withthe
IMSL RETURN NUMERIC FACTOR option. The structure is described in the
IMSL RETURN NUMERIC FACTOR optional argument description of function
imsl f lin sol posdef coordinate.
To free the memory allocated within this structure, use function
imsl f free numeric factor.

IMSL_NUMERIC FACTOR ONLY, (Input)

Compute the numeric factorization of the input matrix and return. The argument b is ignored.

IMSL SOLVE ONLY, (Input)

Solve Ax = b given the numeric or symbolic factorization of A. This option requires the use of either
IMSL SUPPLY NUMERIC FACTORoOr IMSL SUPPLY SYMBOLIC FACTOR.

IMSL SMALLEST DIAGONAL ELEMENT, float *smallest element (Output)
A pointer to a scalar containing the smallest diagonal element that occurred during the numeric fac-
torization. This option is valid only if the numeric factorization is computed during this call to
imsl f sparse cholesky smp.

IMSL LARGEST DIAGONAL ELEMENT, float *largest element (Output)

A pointer to a scalar containing the largest diagonal element that occurred during the numeric factor-
ization. This option is valid only if the numeric factorization is computed during this call to
imsl f sparse cholesky smp.

=RogueWave

sparse_cholesky_smp Chapter 1 Linear Systems 184

IMSL NUM NONZEROS IN FACTOR,int *num nonzeros (Output)
A pointer to a scalar containing the total number of nonzeros in the factor.

IMSL RETURN USER, float x[] (Output)
A user-allocated array of length n containing the solution x.

Description

The function ims1 f sparse cholesky smp solves a system of linear algebraic equations having a sparse
symmetric positive definite coefficient matrix A. In this function’s default usage, a symbolic factorization of a per-
mutation of the coefficient matrix is computed first. Then a numerical factorization exploiting OpenMP
parallelism is performed. The solution of the linear system is then found using the numeric factor.

The symbolic factorization step of the computation consists of determining a minimum degree ordering and then
setting up a sparse supernodal data structure for the Cholesky factor, L. This step only requires the “pattern” of
the sparse coefficient matrix, i.e., the locations of the nonzeros elements but not any of the elements themselves.
Thus, the val field inthe Ims1 f sparse elemstructure isignored. If an application generates different
sparse symmetric positive definite coefficient matrices that all have the same sparsity pattern, then by using
IMSL RETURN SYMBOLIC FACTORand IMSL SUPPLY SYMBOLIC FACTOR, the symbolic factorization
needs only be computed once.

Given the sparse data structure for the Cholesky factor L, as supplied by the symbolic factor, the numeric factor-
ization produces the entries in L so that

pAPT = 11T
Here P is the permutation matrix determined by the minimum degree ordering.

The numerical factorization is an implementation of a parallel supernodal algorithm that combines a left-looking
and a right-looking column computation scheme. This algorithm is described in detail in Rauber et al. (1999).

If an application requires that several linear systems be solved where the coefficient matrix is the same but the
right-hand sides change, the options IMSL. RETURN NUMERIC FACTOR and

IMSL SUPPLY NUMERIC FACTOR can be used to precompute the Cholesky factor. Then the

IMSL SOLVE ONLY option can be used to efficiently solve all subsequent systems.

Given the numeric factorization, the solution x is obtained by the following calculations:

Lyl = Pb
LTy, =y
x=Ply,

The permutation information, P, is carried in the numeric factor structure Imsl_f numeric_factor.

= Rogygmq\{q sparse_cholesky_smp Chapter 1 Linear Systems 185

Examples

Example 1

Consider the 5 x 5 coefficient matrix A,

(10 0 1 0 2]
0 200 0 3
A=|1 0 30 4 0
0 0 4 40 5
2 3 0 5 50]

The number of nonzeros in the lower triangle of Ais nz = 10. We construct the solution x'=(5,4,3,2,1)to the

system Ax = b by setting b := Ax = (55, 83, 103, 97, 82)". The solution is computed and printed.

#include <imsl.h>

int main ()
{
Imsl f sparse elem a[] =
{0, 0, 10.0,

1, 1, 20.0,
2, 0, 1.0,
2, 2, 30.0,
3, 2, 4.0,
3, 3, 40.0,
4, 0, 2.0,
4, 1, 3.0,
4, 3, 5.0,
4, 4, 50.0};

float b[] = {55.0, 83.0, 103.0, 97.0, 82.0};
int n =25, nz = 10;
float *x = NULL;

x = imsl f sparse cholesky smp (n, nz, a, b, 0);
imsl f write matrix ("solution", 1, n, x, 0);

imsl free (x);

}

Output
solution
1 2 3 4 5
5 4 3 2 1

= Rogypmq\{q sparse_cholesky_smp Chapter 1 Linear Systems 186

Example 2

This example shows how a symbolic factor can be re-used. At first, the system Ax = b with A = E(2500, 50) is solved
and the symbolic factorization of A is returned. Then, the system Cy = d with C = A+2%*/, | the identity matrix, is
solved using the symbolic factorization just computed. This is possible because A and C have the same nonzero

structure and therefore also the same symbolic factorization. The solution errors are printed.

#include <imsl.h>
#include <stdlib.h>
#include <stdio.h>

int main ()

{
Imsl f sparse elem *a = NULL, *c = NULL;
Imsl snodal symbolic factor symbolic factor;
float *b = NULL, *d = NULL, *x = NULL, *y = NULL;
float *mod vector = NULL;
int n, ic, nz, i, index;
float error 1, error 2;

ic = 50;
n = 1ic * ic;
mod_vector = (float*) malloc (n * sizeof(float));

/* Build coefficient matrix A */

a = (Imsl f sparse elem *) imsl f generate test coordinate
&nz,
IMSL SYMMETRIC STORAGE,
0);

/* Build coefficient matrix C */

¢ = (Imsl f sparse elem*) malloc (nz * sizeof(Imsl f sparse elem));
for (i = 0; 1 < nz; i++) cl[i] = ali];
for (1 = 0; 1 < n; i++)

cl[i]l.val = 6.0;

/* Form right hand side b */

for (1 = 0; 1 < n; 1+4)
mod vector[i] = (float) (i % 5);
b = (float *) imsl f mat mul rect coordinate ("A*x",

IMSL A MATRIX, n, n, nz, a,
IMSL X VECTOR, n, mod vector,
IMSL SYMMETRIC STORAGE,

0);

/* Form right hand side d */

d = (float *) imsl f mat mul rect coordinate ("A*x",
IMSL A MATRIX, n, n, nz, C,
IMSL X VECTOR, n, mod vector,
IMSL SYMMETRIC STORAGE,

= R{nggmq\{q sparse_cholesky_smp Chapter 1 Linear Systems

187

0);

/* Solve Ax = b and return the symbolic factorization */

x = imsl f sparse cholesky smp (n, nz, a, b,
IMSL RETURN SYMBOLIC FACTOR, &symbolic factor,
0);

/* Compute solution error |x - mod vector| */
error 1 = imsl f vector norm (n, X,
IMSL SECOND VECTOR, mod vector,
IMSL INF NORM, &index,
0);

/* Solve Cy = d given the symbolic factorization */
y = imsl f sparse cholesky smp (n, nz, c, d,
IMSL SUPPLY SYMBOLIC FACTOR, &symbolic factor,
0);

/* Compute solution error |y - mod vector| */
error 2 = imsl f vector norm (n, vy,
IMSL SECOND VECTOR, mod vector,
IMSL INF NORM, &index,

0);
printf ("Solution error |x - mod vector| = %e\n", error 1);
printf ("Solution error |y - mod vector| = %e\n", error 2);

/* Free allocated memory */

if (b) imsl free(b);
if (d) imsl free(d);
if (x) imsl free(x);

(
(
(
if (y) imsl free(y):;
(
(
(

if (mod vector) free(mod vector);
if (a) imsl free(a);
if (c) free(c);

imsl free snodal symbolic factor (&symbolic factor);

}

Output

4.529953e-005
2.861023e-006

Solution error |x - mod vector|
Solution error |y - mod vector|

Example 3

In this example, set A = E(2500, 50). First solve the system Ax = by and return the numeric factorization resulting
from that call. Then solve the system Ax = b, using the numeric factorization just computed. The ratio of execu-
tion times is printed. Be aware that timing results are highly machine dependent.

#include <imsl.h>

= R{ng?mq\{q sparse_cholesky_smp Chapter 1 Linear Systems 188

#include <stdio.h>
#include <omp.h>

int main ()
{
int n, ic, nz;
float *b 1 = NULL, *b 2 = NULL, *x 1 = NULL, *x 2 = NULL;
double time 1, time 2;
Imsl f sparse elem *a = NULL;
Imsl f numeric factor numeric factor;

ic = 50;
n =1ic * ic;

/* Generate two right hand sides */
imsl random seed set (1234567);

b 1 = imsl f random uniform (n, 0);
b 2 = imsl f random uniform (n, 0);

/* Build coefficient matrix a */

a = imsl f generate test coordinate (n, ic, é&nz,
IMSL SYMMETRIC STORAGE,
0);

/* Now solve Ax 1 = b 1 and return the numeric
factorization */

time 1 = omp get wtime();

x 1 = imsl f sparse cholesky smp (n, nz, a, b 1,
IMSL RETURN NUMERIC FACTOR, &numeric factor,
0);

time 1 = omp get wtime() - time 1;

/* Now solve Ax 2 = b 2 given the numeric
factorization */
time 2 = omp get wtime();

x 2 = imsl f sparse cholesky smp (n, nz, a, b 2,
IMSL SUPPLY NUMERIC FACTOR, &numeric_factor,
IMSL SOLVE ONLY,

0);

time 2 = omp get wtime() - time 2;
printf("time 2/time 1 = $1f\n", time 2/time 1);

/* Free allocated memory */
if (x 1) imsl free(x 1);
if (x 2) imsl free(x 2);
if (b_1) imsl free(b 1);

= R{ng?mq\{q sparse_cholesky_smp Chapter 1 Linear Systems 189

if (b_2) imsl free(b 2);
if (a) imsl free(a);
imsl f free numeric factor (&numeric_ factor);

Output

time 2/time 1 = 0.029411

Fatal Errors

A zero or negative square root has occurred
during the factorization. The coefficient matrix
is not positive definite.

IMSL_BAD SQUARE ROOT

= R‘Dgygmq\{eg sparse_cholesky_smp Chapter 1 Linear Systems 190

sparse_cholesky_smp (complex)

3 OpenMP
¥ CE more. . .

more. ..

Computes the Cholesky factorization of a sparse Hermitian positive definite matrix A by an OpenMP parallelized
supernodal algorithm and solves the sparse Hermitian positive definite system of linear equations Ax = b.

Synopsis
#include <imsl.h>

f.complex *imsl c sparse cholesky smp (intn,intnz, Imsl_c_sparse_elem a[],f complexb[],
... 0)

void imsl free snodal symbolic factor (Imsl_snodal_symbolic factor *sym factor)
void imsl ¢ free numeric factor (Imsl_c_numeric_factor *num_ factor)

The type d_complex functions are ims1 z sparse cholesky smp and

imsl z free numeric factor.

Required Arguments

int n (Input)
The order of the input matrix.

intnz (Input)
Number of nonzeros in the lower triangle of the matrix.

Imsl_c_sparse_elem a[] (Input)
An array of length nz containing the location and value of each nonzero entry in the lower triangle of
the matrix.

f.complexb[] (Input)
An array of length n containing the right-hand side.

Return Value

A pointer to the solution x of the sparse Hermitian positive definite linear system Ax = b. To release this space, use
imsl free. If no solution was computed, then NULL is returned.

= Rogygmq\{q sparse_cholesky_smp (complex) Chapter 1 Linear Systems 191

Synopsis with Optional Arguments
#include <ims1.h>

f.complex *imsl c sparse cholesky smp (intn,intnz, Imsl_c_sparse_elem a[],
fcomplexb[1,

IMSL CSC_FORMAT,intcol ptr[],introw ind[],fcomplexvalues[],
IMSL PREORDERING, intpreorder,

IMSL RETURN SYMBOLIC FACTOR, /msl_snodal_symbolic_factor *sym factor,
IMSL SUPPLY SYMBOLIC_ FACTOR,/msl_snodal_symbolic_factor *sym factor,
IMSL SYMBOLIC FACTOR ONLY,

IMSL RETURN NUMERIC FACTOR, /msl_c_numeric_factor *num factor,

IMSL SUPPLY NUMERIC FACTOR, /msl_c_numeric_factor *num factor,

IMSL NUMERIC FACTOR ONLY,

IMSL SOLVE_ONLY,

IMSL SMALLEST DIAGONAL ELEMENT, float *smallest element,

IMSL LARGEST DIAGONAL ELEMENT, float *largest element,

IMSL NUM NONZEROS IN FACTOR,int *num nonzeros,

IMSL RETURN USER, f complex x[],

0)

Optional Arguments

IMSL CSC_FORMAT, intcol ptr[],introw ind[],fcomplex values[] (Input)
Accept the coefficient matrix in compressed sparse column (CSC) format, as describedin the
Compressed Sparse Column (CSC) Format section of the “Introduction” chapter of this manual.

IMSL PREORDERING, int preorder (Input)
The variant of the Minimum Degree Ordering (MDO) algorithm used in the preordering of matrix A:

preorder Method

0 George and Liu's Quotient Minimum Degree
algorithm.
1 Avariant of George and Liu's Quotient Mini-

mum Degree algorithm using a
preprocessing phase and external degrees.

= ROQ}J?WH\{E: sparse_cholesky_smp (complex) Chapter 1 Linear Systems 192

Default: preorder = 0.

IMSL RETURN_ SYMBOLIC FACTOR, Imsl_snodal_symbolic_factor *sym factor (Output)
A pointer to a structure of type Imsl_snodal_symbolic_factor containing, on return, the supernodal
symbolic factorization of the input matrix. A detailed description of the Imsl_snodal_symbolic_factor

structure is given in the following table:

Table 1.8 — Strucuture Ims1l snodal symbolic factor

Parameter

Data Type

Description

nzsub

int =

A pointer to an array containing the com-
pressed row subscripts of the non-zero off-
diagonal elements of the Cholesky factor.

xnzsub

int x*

A pointer to an array of length n+1 containing
indices for *nzsub. The row subscripts for the
non-zeros in column 5 of the Cholesky factor
are stored consecutively beginning with
(*nzsub) [(*xnzsub) [F]].

maxsub

int

The number of elements in array *nzsub that
are used as subscripts. Note that the size of
*nzsub can be larger than maxsub.

x1lnz

int x*

A pointer to an array of length n+1 containing
the starting and stopping indices to use to
extract the non-zero off-diagonal elements
from array *alnz (For a description of alnz,
see the description section of optional argu-
ment IMSL RETURN NUMERIC FACTOR). For
column 5 of the factor matrix, the starting and
stopping indices of *alnz are stored in
(*x1nz) [j] and (*x1nz) [§+1] respectively.

maxlnz

int

The number of non-zero off-diagonal elements
in the Cholesky factor.

perm

int x*

A pointer to an array of length n containing the
permutation vector.

invp

int =

A pointer to an array of length n containing the
inverse permutation vector.

multifrontal space

int

This variable is not used in the current
implementation.

nsuper

int

The number of supernodes in the Cholesky
factor.

snode

int x*

A pointer to an array of length n. Element
(*snode) [j] contains the number of the fun-
damental supernode to which column 7
belongs.

snode ptr

int x*

A pointer to an array of length nsuper+1 con-
taining the start column of each supernode.

nleaves

int

The number of leaves in the postordered elimi-
nation tree of the symmetrically permuted
input matrix A.

etree leaves

int ==

A pointer to an array of length nleaves+1
containing the leaves of the elimination tree.

=RogueWave

sparse_cholesky_smp (complex) Chapter 1 Linear Systems

193

To free the memory allocated within this structure, use function

imsl free snodal symbolic factor.

IMSL SUPPLY SYMBOLIC_ FACTOR, /msl_snodal_symbolic_factor *sym factor (Input)
A pointer to a structure of type Imsl_snodal_symbolic_factor. This structure contains the symbolic fac-
torization of the input matrix computed by ims1 ¢ sparse cholesky smp withthe
IMSL RETURN SYMBOLIC FACTOR option. The structure is described in the
IMSL RETURN SYMBOLIC FACTOR optional argument description.
To free the memory allocated within this structure, use function
imsl free snodal symbolic factor.

IMSL SYMBOLIC FACTOR ONLY, (Input)

Compute the symbolic factorization of the input matrix and return. The argument b is ignored.

IMSL RETURN NUMERIC FACTOR, /msl_c_numeric_factor *num factor (Output)
A pointer to a structure of type Imsl_c_numeric_factor containing, on return, the numeric factorization
of the input matrix. A detailed description of the Imsl_c_numeric_factor structure is given in the
IMSL RETURN NUMERIC FACTOR optional argument description of function

imsl ¢ lin sol posdef coordinate (complex).To freethe memory allocated within this
structure, use function ims1l ¢ free numeric factor.

IMSL SUPPLY NUMERIC FACTOR, /msl_c_numeric_factor *num factor (Input)
A pointer to a structure of type Imsl_c_numeric_factor. This structure contains the numeric factoriza-
tion of the input matrix computed by ims1 ¢ sparse cholesky smp withthe
IMSL RETURN NUMERIC FACTOR option. The structure is described in the
IMSL RETURN NUMERIC FACTOR optional argument description of function
imsl lin sol posdef coordinate (complex).
To free the memory allocated within this structure, use function

imsl c free numeric factor.

IMSL NUMERIC FACTOR_ONLY, (Input)

Compute the numeric factorization of the input matrix and return. The argument b is ignored.

IMSL SOLVE_ ONLY, (Input)

Solve Ax = b given the numeric or symbolic factorization of A. This option requires the use of either
IMSL SUPPLY NUMERIC FACTORoOr IMSL SUPPLY SYMBOLIC FACTOR.

IMSL SMALLEST DIAGONAL ELEMENT, float *smallest element (Output)
A pointer to a scalar containing the smallest diagonal element that occurred during the numeric fac-
torization. This option is valid only if the numeric factorization is computed during this call to
imsl c sparse cholesky smp.

IMSL LARGEST DIAGONAL ELEMENT, float *largest element (Output)
A pointer to a scalar containing the largest diagonal element that occurred during the numeric factor-
ization. This option is valid only if the numeric factorization is computed during this call to
imsl c sparse cholesky smp.

=RogueWave

sparse_cholesky_smp (complex) Chapter 1 Linear Systems 194

IMSL NUM NONZEROS IN FACTOR,int *num nonzeros (Output)
A pointer to a scalar containing the total number of nonzeros in the factor.

IMSL RETURN USER, fcomplex x[] (Output)
A user-allocated array of length n containing the solution x.

Description

The function ims1 c sparse cholesky smp solves a system of linear algebraic equations having a sparse
Hermitian positive definite coefficient matrix A. In this function’s default usage, a symbolic factorization of a per-
mutation of the coefficient matrix is computed first. Then a numerical factorization exploiting OpenMP
parallelism is performed. The solution of the linear system is then found using the numeric factor.

The symbolic factorization step of the computation consists of determining a minimum degree ordering and then
setting up a sparse supernodal data structure for the Cholesky factor, L. This step only requires the “pattern” of
the sparse coefficient matrix, i.e., the locations of the nonzero elements but not any of the elements themselves.
Thus, the val field inthe Ims1 c sparse elemstructure isignored. If an application generates different
sparse Hermitian positive definite coefficient matrices that all have the same sparsity pattern, then by using
IMSL RETURN SYMBOLIC FACTORand IMSL SUPPLY SYMBOLIC FACTOR, the symbolic factorization
needs only be computed once.

Given the sparse data structure for the Cholesky factor L, as supplied by the symbolic factor, the numeric factor-
ization produces the entries in L so that
pAPT = 111

Here P is the permutation matrix determined by the minimum degree ordering.

The numerical factorization is an implementation of a parallel supernodal algorithm that combines a left-looking
and a right-looking column computation scheme. This algorithm is described in detail in Rauber et al. (1999).

If an application requires that several linear systems be solved where the coefficient matrix is the same but the
right-hand sides change, the options IMSL. RETURN NUMERIC FACTOR and

IMSL SUPPLY NUMERIC FACTOR can be used to precompute the Cholesky factor. Then the

IMSL SOLVE ONLY option can be used to efficiently solve all subsequent systems.

Given the numeric factorization, the solution x is obtained by the following calculations:
Lyl = Pb
H
Lya=x
x=Ply,

The permutation information, P, is carried in the numeric factor structure Ims/_c_numeric_factor.

= Rogygmq\{q sparse_cholesky_smp (complex) Chapter 1 Linear Systems 195

Examples

Example 1

As a simple example of default use, consider the following Hermitian positive definite matrix

2 —1+i 0
A=|-1—-i 4 1+2i
0 1-2i 10

We construct the solution x™ = (1 + i, 2 + 2i, 3 + 3i) to the system Ax = b by setting

b:=Ax = (=2 + 2i, 5 +15i, 36 + 28/)". The number of nonzeros in the lower triangle is nz = 5. The solution is com-

puted and printed.

#include <imsl.h>

int main ()
{

int n = 3, nz =
f complex b[] =
f complex *x =

4 ll {4'OI

~
~

N RN
~

2
0
1, {1.0,

’

X =

imsl c write matrix

imsl free (x);

}

Output

Solution, x, of Ax
1 1,

2 2,

3 3,
Example 2

This example shows how a symbolic factor can be re-used. Consider matrix A, a Hermitian positive definite matrix
with value 6 on the diagonal and value -1-j on its lower codiagonal and the lower band at distance 50 from the

, {10.0,
{-1.0,

imsl c sparse cholesky smp

5;

{{-2.0, 2.0}, {5.0, 15.0}, {36.0,

NULL;
Imsl c sparse elem a[] =

{0, 0, {2.0, 0.0},
0.0},

0.0},

-1.0},

-2.0}};

0);

(n, nz, a, b,

("Solution, x, of Ax = b", n, 1, X,

28.0}};

diagonal. At first, the system Ax = b is solved and the symbolic factorization of A is returned. Then, the system

Cy = d with C = A+4%*/, | the identity matrix, is solved using the symbolic factorization just computed. This is possi-

ble because A and C have the same nonzero structure and therefore also the same symbolic factorization. The

solution errors are printed.

=RogueWave

sparse_cholesky_smp (complex)

Chapter 1 Linear Systems

196

#include <imsl.h>
#include <stdlib.h>
#include <stdio.h>

int main ()
{
int n, ic, nz, i, index;
float error 1, error 2;
f complex *b = NULL, *d = NULL, *x = NULL, *y = NULL;
f complex *mod vector = NULL;
Imsl ¢ sparse elem *a = NULL, *c = NULL;
Imsl snodal symbolic factor symbolic factor;

ic = 50;
n = 1ic * ic;
mod vector = (f complex*) malloc (n * sizeof (f complex));

/* Build coefficient matrix A */

a = imsl c generate test coordinate (n, ic,
&nz,
IMSL SYMMETRIC STORAGE,
0);

/* Build coefficient matrix C */
¢ = (Imsl c sparse elem *) malloc (nz * sizeof (Imsl c sparse elem));
for (1=0; i<nz; i++)
cli] = alil:
for (i=0; i<n; i++)
{
c[i].val.re = 10.0;
c[i].val.im = 0.0;

/* Form right hand side b */
for (1 = 0; 1 < n; i++)
{
mod vector[i].re = (
mod vector[i].im = 0.0;

}
b = (f complex *) imsl ¢ mat mul rect coordinate ("A*x",
IMSL A MATRIX, n, n, nz, a,
IMSL X VECTOR, n, mod vector,
IMSL SYMMETRIC STORAGE,
0);

/* Form right hand side d */
d = (f complex *) imsl c mat mul rect coordinate ("A*x",

= R{ng?mq\{q sparse_cholesky_smp (complex) Chapter 1 Linear Systems 197

IMSL A MATRIX, n, n, nz, c,
IMSL X VECTOR, n, mod vector,
IMSL SYMMETRIC STORAGE,

0);

/* Solve Ax = b and return the symbolic factorization */

x = imsl c sparse cholesky smp (n, nz, a, b,
IMSL RETURN_ SYMBOLIC FACTOR, &symbolic factor,
0);

/* Compute error |x-mod vector| */
error 1 = imsl c¢ vector norm (n, X,
IMSL SECOND VECTOR, mod vector,
IMSL INF NORM, &index,
0);

/* Solve Cy = d given the symbolic factorization */
y = imsl c¢ sparse cholesky smp (n, nz, ¢, d,
IMSL SUPPLY SYMBOLIC FACTOR, &symbolic factor,
0);

/* Compute error |y-mod vector| */

error 2 = imsl c¢ vector norm (n, vy,
IMSL SECOND VECTOR, mod vector,
IMSL INF NORM, &index,

0)-
printf ("Solution error |x - mod vector| = %e\n", error 1);
printf ("Solution error |y - mod vector| = %e\n", error 2);

/* Free allocated memory */
if (mod vector) free(mod vector);

if (a) imsl free (a);

if (c) free (c);

if (b) imsl free (b);

if (d) imsl free (d);

if (y) imsl free (y);

if (x) imsl free (x);

imsl free snodal symbolic factor (&symbolic factor);

Output
Solution error |x - mod vector| = 2.885221e-006
Solution error |y - mod vector| = 2.386146e-006

= R{ng?mq\{q sparse_cholesky_smp (complex) Chapter 1 Linear Systems 198

Example 3

In this example, set A = E(2500, 50). First solve the system Ax = by and return the numeric factorization resulting
from that call. Then solve the system Ax = b, using the numeric factorization just computed. The ratio of execu-
tion times is printed. Be aware that timing results are highly machine dependent.

#include <imsl.h>
#include <stdio.h>
#include <omp.h>

int main ()
{
int n, ic, nz, i, index;
float *rand vec = NULL;
double time 1, time 2;
f complex b 1[2500], b 2[2500], *x 1 = NULL, *x 2 = NULL;
Imsl ¢ sparse elem *a = NULL;
Imsl c numeric factor numeric factor;

ic = 50;
n =1ic * ic;
index = 0;

/* Generate two right hand sides */
imsl random seed set (1234567);

rand vec = imsl f random uniform (4 * n, 0);
for (i = 0; 1 < n; i++) {

b 1[i].re = rand vec[index++];

b 1[i].im = rand vec[index++];

b 2[i].re = rand vec[index++];

b 2[i].im = rand vec[index++];

/* Build coefficient matrix a */

a = imsl c generate test coordinate (n, ic, é&nz,
IMSL SYMMETRIC STORAGE,
0);

/* Now solve Ax 1 = b 1 and return the numeric factorization */
time 1 = omp get wtime();

x 1 = imsl c sparse cholesky smp (n, nz, a, b 1,
IMSL RETURN NUMERIC FACTOR, &numeric_factor,
0);

time 1 = omp get wtime() - time 1;

/* Now solve Ax 2 = b 2 given the numeric factorization */
time 2 = omp get wtime();

= R{nggmq\{q sparse_cholesky_smp (complex) Chapter 1 Linear Systems

199

x 2 = imsl c_sparse cholesky smp (n, nz, a, b 2,
IMSL SUPPLY NUMERIC FACTOR, é&numeric factor,
IMSL SOLVE_ONLY,

0);

time 2 = omp get wtime() - time 2;

printf("time 2/time 1 = $1f\n", time 2/time 1);
/* Free memory */

if (rand vec) imsl free(rand vec);

if (x 1) imsl free(x 1);

if (x 2) imsl free(x 2);

if (a) imsl free(a);
imsl c free numeric factor (&numeric_ factor);

Output

time 2/time 1 = 0.025771

Fatal Errors

IMSL_BAD SQUARE ROOT A zero or negative square root has occurred
during the factorization. The coefficient matrix
is not positive definite.

= R{ng?mq\{q sparse_cholesky_smp (complex) Chapter 1 Linear Systems 200

in_sol_gen_min_residual

Solves a linear system Ax = b using the restarted generalized minimum residual (GMRES) method.

Synopsis
#include <ims1.h>

float *imsl f 1in sol gen min residual (intn, void amultp (float *p, float *z), float *b,
. 0)

The type double function is imsl_d_lin_sol_gen_min_residual.

Required Arguments

intn (Input)
Number of rows in the matrix.

void amultp (float *p, float *z) (Input)
User-supplied function which computes z = Ap.

float *b (Input)
Vector of length n containing the right-hand side.

Return Value

A pointer to the solution x of the linear system Ax = b. To release this space, use ims1_free. If no solution was
computed, then NULL is returned.

Synopsis with Optional Arguments

#include <ims1.h>

float *imsl f 1in sol gen min residual (intn, void amultp (), float *b,
IMSL_RETURN USER, float x[],
IMSL_MAX_ TTER,int *maxit,
IMSL REL ERR,floattolerance,
IMSL PRECOND, void precond (),
TMST,_MAX_ KRYLOV SUBSPACE_DIM, int kdmax,

IMSL HOUSEHOLDER REORTHOG,

E: R{ng?mq\{q lin_sol_gen_min_residual Chapter 1 Linear Systems 201

IMSL FCN W DATA, void amultp (), void *data,
IMSL PRECOND W DATA, void precond (), void *data,

0)

Optional Arguments

IMSL RETURN USER, float x[] (Output)
A user-allocated array of length n containing the solution x.

IMSL MAX ITER,int *maxit (Input/Output)
A pointer to an integer, initially set to the maximum number of GMRES iterations allowed. On exit, the
number of iterations used is returned.
Default: maxit = 1000

IMSL REL ERR, float tolerance (Input)
The algorithm attempts to generate x such that ||b - Ax|l; < Tllbll,, where T = tolerance.

Default: tolerance = sqrt (imsl f machine (4))

IMSL PRECOND, void precond (float *r, float *z) (Input)

User supplied function which sets z= M 'r, where M is the preconditioning matrix.

IMSL MAX KRYLOV SUBSPACE DIV, int kdmax, (Input)
The maximum Krylov subspace dimension, i.e., the maximum allowable number of GMRES iterations
allowed before restarting.
Default: kdmax =imsl i min(n, 20)

IMSL HOUSEHOLDER REORTHOG,
Perform orthogonalization by Householder transformations, replacing the Gram-Schmidt process.

IMSL FCN W DATA, void amultp (float *p, float * z, void *data), void *data, (Input)
User supplied function which computes z = Ap, which also accepts a pointer to data that is supplied
by the user. data is a pointer to the data to be passed to the user-supplied function. See Passing
Data to User-Supplied Functions in the introduction to this manual for more details.

IMSL PRECOND W DATA, void precond (float *r, float *z, void *data), void *data (Input)

User supplied function which sets z= M~'r, where M is the preconditioning matrix, which also accepts
a pointer to data that is supplied by the user. data is a pointer to the data to be passed to the user-
supplied function. See Passing Data to User-Supplied Functions section in the introduction to this
manual for more details.

E: R{ng?mq\{q lin_sol_gen_min_residual Chapter 1 Linear Systems 202

Description

The function ims1 f 1lin sol gen min residual, based onthe FORTRAN subroutine GMRES by H.F.
Walker, solves the linear system Ax = b using the GMRES method. This method is described in detail by Saad and
Schultz (1986) and Walker (1988).

The GMRES method begins with an approximate solution xq and an initial residual rg = b — Axq. At iteration m, a
correction z,, is determined in the Krylov subspace

K™ (v) = span (v, Av, ..., A™1y)

Vv = ro which solves the least-squares problem

(ze®00) Io-a(xo+2)l,
Then at iteration m, Xo, = Xg + Zm-

Orthogonalization by Householder transformations requires less storage but more arithmetic than Gram-
Schmidt. However, Walker (1988) reports numerical experiments which suggest the Householder approach is
more stable, especially as the limits of residual reduction are reached.

Examples

Example 1

As an example, consider the following matrix:

[10 0 0 0 0 0
0 10 -3 -1 0 0
0 0 15 0 0 0
-2 0 0 10 -1 0
-1 0 0 -5 1 -3
-1 =2 0 0 0 6|

Let x" = (1,2, 3,4, 5, 6)so that Ax = (10, 7, 45, 33, =34, 31)". The function
imsl f mat mul rect coordinate isused toform the product Ax.

#include <imsl.h>
void amultp (float*, float*);

int main ()

{
float b[] = {10.0, 7.0, 45.0, 33.0, -34.0, 31.0};
int n = 6;
float *x;

E: R{ng?mq\{q lin_sol_gen_min_residual Chapter 1 Linear Systems 203

x = imsl f lin sol gen min residual (n, amultp, b,
0);

imsl f write matrix ("Solution, x, to Ax = b", 1, n, x, 0);

void amultp (float *p, float *z)
{

Imsl f sparse elem a[] = {0, 0, 10.0,
1, 1, 10.0,
1, 2, =-3.0,
1, 3, -1.0,
2, 2, 15.0,
3, 0, -2.0,
3, 3, 10.0,
3, 4, -1.0,
4, 0, -1.0,
4, 3, -5.0,
4, 4, 1.0,
4, 5, =-3.0,
5, 0, -1.0,
5, 1, -2.0,
5, 5, 6.0};

int n = 6;

int nz = 15;

imsl f mat mul rect coordinate ("A*x",
IMSL A MATRIX, n, n, nz, a,
IMSL X VECTOR, n, p,
IMSL RETURN USER VECTOR, z,

0)s
}
Output
Solution, x, to AXx =D
1 2 3 4 5 6
1 2 3 4 5 6
Example 2

In this example, the same system given in the first example is solved. This time a preconditioner is provided. The
preconditioned matrix is chosen as the diagonal of A.

#include <imsl.h>
#include <stdio.h>

void amultp (float*, float*);
void precond (float*, float*);

E: Rogypmq\{q lin_sol_gen_min_residual Chapter 1 Linear Systems 204

int main ()

{
float b[]
int n = 6;
float *x;
int maxit = 1000;

{10.0, 7.0, 45.0, 33.0, -34.0, 31.0};

x = imsl f 1lin sol gen min residual (n, amultp, b,
IMSL MAX ITER, &maxit,
IMSL PRECOND, precond,
0);

imsl f write matrix ("Solution, x, to Ax =Db", 1, n, x, 0);
printf ("\nNumber of iterations taken = %d\n", maxit);

}

/* Set z = Ap */
void amultp (float *p, float *z)
{
static Imsl f sparse elem a[] =
{0, 0, 10.0,

1, 1, 10.0,
1, 2, -3.0,
1, 3, -1.0,
2, 2, 15.0,
3, 0, -2.0,
3, 3, 10.0,
3, 4, -1.0,
4, 0, -1.0,
4, 3, =-5.0,
4, 4, 1.0,
4, 5, -3.0,
5, 0, -1.0,
5,1, -2.0,
5, 5, 6.0};

int n = 6;

int nz = 15;

imsl f mat mul rect coordinate ("A*x",

IMSL A MATRIX, n, n, nz, a,
IMSL X VECTOR, n, p,
IMSL RETURN USER VECTOR, z,
0);

}

/* Solve Mz = r */
void precond (float *r, float *z)

{

static float diagonal inverse[] =
{0.1, 0.1, 1.0/15.0, 0.1, 1.0, 1.0/6.0};
int n = 6;

E: R{ng?mq\{q lin_sol_gen_min_residual Chapter 1 Linear Systems 205

for (i=0; i<n; i++)
z[1] = diagonal inversel[i]*r[i];
}
Output
Solution, x, to AXx = Db
1 2 3 4 5 6
1 2 3 4 5 6

Number of iterations taken =

Fatal Errors

IMSL_STOP USER_FCN Request from user supplied function to stop algorithm.
User flag = "#".

E: R‘Dgygmq\{eg lin_sol_gen_min_residual Chapter 1 Linear Systems 206

in_sol_def_cg

Solves a real symmetric definite linear system using a conjugate gradient method. Using optional arguments, a
preconditioner can be supplied.

Synopsis
#include <imsl.h>
float *imsl f 1in sol def cg(intn,void amultp (), float *b, .., 0)

The type double functionis imsl d lin sol def cg.

Required Arguments

intn (Input)
Number of rows in the matrix.

void amultp (float *p, float * z)
User-supplied function which computes z = Ap.

float *b (Input)
Vector of length n containing the right-hand side.

Return Value

A pointer to the solution x of the linear system Ax = b. To release this space, use ims1 free. If no solution was
computed, then NULL is returned.

Synopsis with Optional Arguments

#include <ims1.h>

float *imsl f 1in sol def cg(intn,void amultp (), float *b,
IMSL,_RETURN USER,floatx[],
IMSL,_MAX ITER, int *maxit,
IMSL REL ERR,float relative error,
IMSL PRECOND, void precond (),
IMSL JACOBI, float *diagonal,

IMSL_FCN_W_DATA, void amultp (), void data,

= R{nggmq\{q lin_sol_def_cg Chapter 1 Linear Systems 207

IMSL PRECOND W DATA, void precond (), void *data,

0)

Optional Arguments

IMSL RETURN USER, float x[] (Output)
A user-allocated array of length n containing the solution x.

IMSL MAX ITER,int *maxit (Input/Output)
A pointer to an integer, initially set to the maximum number of iterations allowed. On exit, the num-
ber of iterations used is returned.

IMSL REL ERR, float relative_error (Input)
The relative error desired.
Default: relative_error = sgrt(imsl_f_machine(4))

IMSL PRECOND, void precond (float *x, float *z) (Input)

User supplied function which sets z= M 'r, where M is the preconditioning matrix.

IMSL JACOBI, float diagonal[] (Input)
Use the Jacobi preconditioner, i.e. M = diag(A). The user-supplied vector diagonal should be set so
that diagonal[i] = A;.

IMSL FCN W DATA, void amultp (float *p, float * z, void *data), void *data, (Input)
User supplied function which computes z = Ap, which also accepts a pointer to data that is supplied
by the user. data is a pointer to the data to be passed to the user-supplied function. See Passing
Data to User-Supplied Functions in the introduction to this manual for more details.

IMSL PRECOND W DATA, void precond (float *r, float * z, void *data), void *data, (Input)

User supplied function which sets z= M~'r, where M is the preconditioning matrix, which also accepts
a pointer to data that is supplied by the user. data is a pointer to the data to be passed to the user-
supplied function. See Passing Data to User-Supplied Functions in the introduction to this manual for
more details.

Description

The function ims1 f 1in sol def cgsolvesthe symmetric definite linear system Ax = b using the conju-
gate gradient method with optional preconditioning. This method is described in detail by Golub and Van Loan
(1983, Chapter 10), and in Hageman and Young (1981, Chapter 7).

The preconditioning matrix M is a matrix that approximates A, and for which the linear system Mz = r is easy to
solve. These two properties are in conflict; balancing them is a topic of much current research. In the default use
ofimsl f 1lin sol def cg, M=/ Ifthe option IMSL JACOBI is selected, M is set to the diagonal of A.

The number of iterations needed depends on the matrix and the error tolerance. As a rough guide,

= R{ng?mq\{q lin_sol_def_cg Chapter 1 Linear Systems 208

maxit=+vn for n>>1

See the references mentioned above for details.

Let M be the preconditioning matrix, let b, p, r, x, and z be vectors and let T be the desired relative error. Then the
algorithm used is as follows:

A=-—1
Py~ %o
ri=b—Ap
for k=1, ... ,maxit
Zk:M_lrk
if k=1, then
ﬂk=l
Pr = 2k
else

P = <ZI{”k> / <Z£—lrk—1>
Pi= 2t By

endif

z = Ap

O = <Z£—1Zk—1> / <ZI{P1<>

X = Xp T 0y py
Fr =T = Q2

if <||zk|\2§r(1 —/1)||xk||2> then
recompute 4
if < |zell, <t (1-2) ||xk||2> exit

endif
endfor

Here X is an estimate of Ay.,(G), the largest eigenvalue of the iteration matrix G =/ - M " A. The stopping crite-
rion is based on the result (Hageman and Young 1981, pp. 148-151)

e =l _ 1 12ill o1
||x||M - l_imax<G> kaHM

where

IxlI3, = x" Mx

It is also known that

= Rogygmq\{q lin_sol_def_cg Chapter 1 Linear Systems 209

’lmax<T1> S’lmax<T2> = .. S’1max<G) <1

where the T, are the symmetric, tridiagonal matrices

Mty @y
Wy Hy @3
T,= 2

W3 H3
with ue=1 - B /oy - 1/, Mg =1 - 1/et4 and

o =B /-

Usually the eigenvalue computation is needed for only a few of the iterations.

Examples

Example 1

In this example, the solution to a linear system is found. The coefficient matrix is stored as a full matrix.

#include <imsl.h>
static void amultp (float*, float*);

int main ()

{
int n = 3;
float b[] = {27.0, -78.0, 64.0};
float *x;

x = imsl f 1lin sol def cg (n, amultp, b, 0);

imsl f write matrix ("x", 1, n, x, 0);

static void amultp (float *p, float *z)

{
static float al[] = {1.0, -3.0, 2.0,

-3.0, 10.0, -5.0,
2.0, -5.0, 6.0};
int n = 3;

imsl f mat mul rect ("A*x",
IMSL A MATRIX, n, n, a,
IMSL X VECTOR, n, p,
IMSL RETURN USER, z,
0);

= Rogypmq\{q lin_sol_def_cg Chapter 1 Linear Systems 210

Output

Example 2

In this example, two different preconditioners are used to find the solution of a linear system which occursin a

finite difference solution of Laplace’s equation on a regular ¢ x ¢ grid, ¢ = 100. The matrix is A = E (¢, c). For the
first solution, select Jacobi preconditioning and supply the diagonal, so M = diag (A). The number of iterations
performed and the maximum absolute error are printed. Next, use a more complicated preconditioning matrix,
M, consisting of the symmetric tridiagonal part of A.

Notice that the symmetric positive definite band solver is used to factor M once, and subsequently just perform
forward and back solves. Again, the number of iterations performed and the maximum absolute error are
printed. Note the substantial reduction in iterations.

#include <imsl.h>
#include <stdio.h>
#include <stdlib.h>

static void amultp (float*, float*);
static void precond (float*, float*);
static Imsl f sparse elem *a;

static int n = 2500;

static int ¢ = 50;

static int nz;

int main ()

{
int maxit = 1000;
int 1i;
int index;
float *b;
float *x;
float *mod five;
float *diagonal;
float norm;

n = c*c;

mod five = (float*) malloc (n*sizeof (*mod five));
diagonal = (float*) malloc (n*sizeof (*diagonal));
b = (float*) malloc (n*sizeof (*b));

/* Generate coefficient matrix */
a = imsl f generate test coordinate (n, c, &nz,
0);

= R{nggmq\{q lin_sol_def_cg Chapter 1 Linear Systems

211

/* Set a predetermined answer and diagonal */
for (i=0; i<n; i++) {
mod five[i] = (float) (i % 5);
diagonal[i] 4.0;

/* Get right hand side */
amultp (mod five, b);

/* Solve with jacobi preconditioning */
x = imsl f lin sol def cg (n, amultp, b,
IMSL MAX ITER, &maxit,
IMSL JACOBI, diagonal,
0);

/* Find max absolute error, print results */
norm = imsl f vector norm (n, X,
IMSL SECOND VECTOR, mod five,
IMSL INF NORM, &index,
0)7;
printf ("iterations = %d, norm = %e\n", maxit, norm);
imsl free (x);

/* Solve same system, with different preconditioner */
x = imsl f 1lin sol def cg (n, amultp, b,
IMSL MAX ITER, &maxit,
IMSL PRECOND, precond,
0)s

norm = imsl f vector norm (n, X,
IMSL SECOND VECTOR, mod five,
IMSL INF NORM, &index,
0);
printf ("iterations = %d, norm = %e\n", maxit, norm);

/* Set z = Ap */

static void amultp (float *p, float *z)

{

imsl f mat mul rect coordinate ("A*x",

IMSL A MATRIX, n, n, nz, a,
IMSL X VECTOR, n, p,
IMSL _RETURN USER VECTOR, z,
0);

/* Solve Mz = r */
static void precond (float *r, float *z)

{

static float *m;

= R{nggmq\{q lin_sol_def_cg Chapter 1 Linear Systems 212

static float *factor;
static int first = 1;
float *null = (float*) O;

if (first) {
/* Factor the first time through */
m = imsl f generate test band (n, 1,
IMSL SYMMETRIC STORAGE,
0);

imsl £ lin sol posdef band (n, m, 1, null,
IMSL FACTOR, &factor,
IMSL FACTOR ONLY,

0);

first 1;

/* Perform the forward and back solves */
imsl f lin sol posdef band (n, m, 1, r,
IMSL FACTOR USER, factor,
IMSL_ SOLVE_ ONLY,
IMSL RETURN USER, z,
0);
}

Output

iterations = 115, norm = 1.382828e-05
75, norm = 7.319450e-05

iterations

Fatal Errors

IMSL STOP USER FCN Request from user supplied function to stop algorithm.
User flag = "#".

= R{nggmq\{q lin_sol_def_cg Chapter 1 Linear Systems 213

in_least_squares_gen

more. ..

Solves a linear least-squares problem Ax = b. Using optional arguments, the QR factorization of A, AP = QR, and
the solve step based on this factorization can be computed.

Synopsis
#include <imsl.h>
float *imsl f 1lin least squares gen (intm, intn,floata([],floatb(], .., 0)

The type double procedure is imsl d 1lin least squares_gen.

Required Arguments

intm (Input)
Number of rows in the matrix.

intn (Input)
Number of columns in the matrix.

floata[] (Input)
Array of size m x n containing the matrix.

floatb[] (Input)
Array of size m containing the right-hand side.

Return Value

If no optional arguments are used, function ims1 f 1lin least squares genreturns a pointer to the
solution x of the linear least-squares problem Ax = b. To release this space, use ims1 free. If no value can be

computed, then NULL is returned.

Synopsis with Optional Arguments
#include <ims1.h>
float *imsl f 1in least squares_gen (intm,intn, floata[], floatb[],

IMSL A COL _DIM, inta col dim,

= R{nggﬂg\ﬁ lin_least_squares_gen Chapter 1 Linear Systems 214

IMSL RETURN USER, float x[1,

IMSL BASIS, float tol, int *kbasis,
IMSL_RESIDUAL, float **p res,

IMSL RESIDUAL USER, float res|[1],

IMSL FACTOR, float **p_graux, float **p qr,
IMSL FACTOR USER, float qraux[1], float qr[],
IMSL FAC_COL DIM, intgr col dim,

IMSL Q, float **p g,

IMSL_Q USER,floatql[],

IMSL Q COL DIM,intq col dim,

IMSL PIVOT, intpvt[1],

IMSL FACTOR ONLY,

IMSL SOLVE ONLY,

0)

Optional Arguments

IMSL A COL DIM, inta col dim (Input)
The column dimension of the array a.
Defaultta_col dim=n

IMSL RETURN USER, float x[1 (Output)
A user-allocated array of size n containing the least-squares solution x. If IMSL._ RETURN_ USER s
used, the return value of the function is a pointer to the array x.

IMSL BASIS, float tol,int *kbasis (Input, Input/Output)

float tol (Input)
Nonnegative tolerance used to determine the subset of columns of A to be included in the solu-
tion.
Default: tol =sgrt (ims1_ amach(4))

int *kbasis (Input/Output)
Integer containing the number of columns used in the solution. kbasis = Kif |rgq kel
< |tol|*|ry 1. For more information on the use of this option, see Description section.

Default: kbasis = min (m, n)

= R{ng?mq\{q lin_least_squares_gen Chapter 1 Linear Systems 215

IMSL RESIDUAL, float **p res (Output)
The address of a pointer to an array of size m containing the residual vector b — Ax. On return, the

necessary space is allocated by the function. Typically, float *p_res is declared, and &p_resis
used as an argument.

IMSL RESIDUAL USER, float res[] (Output)
A user-allocated array of size m containing the residual vector b — Ax.

IMSL FACTOR, float **p graux, float **p gr (Output)

float **p graux (Input/Output)
The address of a pointer graux to an array of size n containing the scalars T of the House-
holder transformations in the first min (m, n) positions. On return, the necessary space is

allocated by the function. Typically, float *graux is declared, and &graux is used as an
argument.

float **p _gr (Input/Output)
The address of a pointer to an array of size m x n containing the Householder transformations
that define the decomposition. The strictly lower-triangular part of this array contains the infor-
mation to construct Q, and the upper-triangular part contains R. On return, the necessary space
is allocated by the function. Typically, float *qxr is declared, and &gr is used as an argument.

IMSL FACTOR USER, float graux[], float gr [] (Input/Output)

float graux [] (Input/Output)

A user-allocated array of size n containing the scalars Ty of the Householder transformations in
the first min (m, n) positions.

float gr [1 (Input/Output)

A user-allocated array of size m x n containing the Householder transformations that define the
decomposition. The strictly lower-triangular part of this array contains the information to con-
struct Q. The upper-triangular part contains R. If the data in a is not needed, gr can share the
same storage locations as a by using a instead of the separate argument gr.

These parameters are “Input” if IMSL_SOLVE is specified; “Output” otherwise.

IMSL FAC COL DIM intgr col dim (Input)
The column dimension of the array containing QR factorization.
Default: gr _col dim=n

IMSL_Q,float **p g (Output)
The address of a pointer to an array of size m x m containing the orthogonal matrix of the factoriza-

tion. On return, the necessary space is allocated by the function. Typically, float *q is declared, and
&g is used as an argument.

IMSL Q USER, floatq[] (Output)
A user-allocated array of size m x m containing the orthogonal matrix Q of the QR factorization.

=RogueWave

lin_least_squares_gen Chapter 1 Linear Systems 216

IMSL Q COL DIM,intg col dim (Input)
The column dimension of the array containing the Q matrix of the factorization.
Default: g _col dim=m

IMSL PIVOT,intpvt[] (Input/Output)
Array of size n containing the desired variable order and usage information. The argument is used
with IMSL_FACTOR_ONLY or IMSL_SOLVE_ONLY

On input, if pvt [k — 1]> 0, then column k of A is an initial column. If pvt [k — 1] = 0, then the col-
umn of Ais a free column and can be interchanged in the column pivoting. If pvt [k — 1] <0, then
column k of Ais a final column. If all columns are specified as initial (or final) columns, then no pivot-
ing is performed. (The permutation matrix P is the identity matrix in this case.)

On output, pvt [k — 1] contains the index of the column of the original matrix that has been inter-
changed into column k.
Default: pvt [k —1]1=0,k=1,..,n

IMSL FACTOR ONLY
Compute just the QR factorization of the matrix AP with the permutation matrix P defined by pvt
and by further pivoting involving free columns. If IMSL. FACTOR_ONLY is used, the additional argu-
ments IMSL PIVOT and IMSL FACTOR are required. In that case, the required argument b is
ignored, and the returned value of the function is NULL.

IMSL SOLVE ONLY
Compute the solution to the least-squares problem Ax = b given the QR factorization previously com-
puted by this function. If IMSL SOLVE_ONLY is used, arguments IMSL FACTOR_USER,
IMSL PIVOT, and IMSL BASIS are required, and the required argument a is ignored.

Description

The function ims1l f 1lin least squares_ gen solves a system of linear least-squares problems Ax = b
with column pivoting. It computes a QR factorization of the matrix AP, where P is the permutation matrix defined
by the pivoting, and computes the smallest integer k satisfying |ry4q i+1| < [tol|*|rq 1] to the output variable

kbasis. Householder transformations

Oy = 1 = Tt O
k=1,..,min(m — 1, njare used to compute the factorization. The decomposition is computed in the form Qpyinm-
1,n)-Q1AP = R, s0 AP = QR where Q = Q1...Qmjinm-1, n)- Since each Householder vector uy has zeros in the first
k — 1 entries, it is stored as part of column k of gr. The upper-trapezoidal matrix R is stored in the upper-trape-
zoidal part of the first min (m, n) rows of gr. The solution x to the least-squares problem is computed by solving
the upper-triangular system of linear equations R(1:k, 1:k) y (1:k) = (QTb) (1:k) with k = kbasis. The solution is
completed by setting y(k + 1 : n) to zero and rearranging the variables, x = Py.

= Rogygmq\{q lin_least_squares_gen Chapter 1 Linear Systems 217

When IMSL FACTOR_ONLY is specified, the function computes the QR factorization of AP with P defined by the
input pvt and by column pivoting among “free” columns. Before the factorization, initial columns are moved to
the beginning of the array a and the final columns to the end. Both initial and final columns are not permuted
further during the computation. Just the free columns are moved.

If IMSL SOLVE_ONLY is specified, then the function computes the least-squares solution to Ax = b given the
QR factorization previously defined. There are kbasis columns used in the solution. Hence, in the case that all
columns are free, x is computed as described in the default case.

Examples

Example 1

This example illustrates the least-squares solution of four linear equations in three unknowns using column piv-
oting. The problem is equivalent to least-squares quadratic polynomial fitting to four data values. Write the
polynomial as p(t) = x; + tx, + t°x3 and the data pairs (t;, b)), t; = 2i,i =1, 2, 3, 4. A pointer to the solution to Ax = b

is returned by the function ims1 f 1lin least squares gen.

#include <imsl.h>

float al]l] = {1.0, 2.0, 4.0,
1.0, 4.0, 16.0,
1.0, 6.0, 36.0,
1.0, 8.0, 64.0};
float b[] = {4.999, 9.001, 12.999, 17.001%};

int main ()
{
int m=4, n = 3;
float *x;
/* Solve Ax = b for x */

x = imsl f lin least squares gen (m, n, a, b, 0);

/* Print x */

imsl f write matrix ("Solution vector™, 1, n, x, 0);
}
Output
Solution vector
1 2 3
0.999 2.000 0.000

= R{ng?mq\{q lin_least_squares_gen Chapter 1 Linear Systems 218

Example 2

This example uses the same coefficient matrix A as in the initial example. It computes the QR factorization of A
with column pivoting. The final and free columns are specified by pvt and the column pivoting is done only

among the free columns.

#include <imsl.h>

float all = {1.0, 2.0, 4.0,
1.0, 4.0, 16.0,
1.0, 6.0, 36.0,
1.0, 8.0, 64.0};
int evt[] = {0, 0, -1};
int main ()
{
int m=4, n = 3;
float *x, *b;
float *p_graux, *p dgr;
float *p_q;
/*
/*
/*
x = imsl f 1lin least squares_gen

/*

imsl f write matrix

/*

imsl f write matrix

(ml n/ al

("The matrix Q",

("The matrix R",

Compute the QR factorization */
of A with partial column */
pivoting */

b,
IMSL_PIVOT, pvt,
IMSL_FACTOR, &p graux,
IMSL Q, &p g,
IMSL_FACTOR ONLY,

0) 7

&p_qr,

Print Q */

m, m, p_q, 0);

Print R */
m, n, p_dJdr,

IMSL PRINT UPPER,

0):

/*

imsl 1 write matrix

}

Output
The matrix Q
1 2 3
1 -0.1826 -0.8165 0.5000
2 -0.3651 -0.4082 -0.5000
3 -0.5477 0.0000 -0.5000

("The Pivot Sequence", 1, n,

Print pivots */

pvt, 0);

-0.2236
0.6708
-0.6708

=RogueWave

lin_least_squares_gen Chapter 1 Linear Systems

219

4 -0.7303 0.4082 0.5000

The matrix R

1 2 3
1 -10.95 -1.83 -73.03
2 -0.82 16.33
3 8.00

The Pivot Sequence

1 2 3
2 1 3
Example 3

This example computes the QR factorization with column pivoting for the matrix A of the initial example. It com-

putes the least-squares solutions to Ax = b; fori =1, 2, 3.

#include <imsl.h>
#include <stdio.h>

float al]

Il
—
’_\
o
N
o
[N
o
~

1.0, 4.0, 16.0,

1.0, 6.0, 36.0,

1.0, 8.0, 64.0};
float b[] = {4.999, 9.001, 12.999,

2.0, 3.142, 5.11, O
1.34, 8.112, 3.76, 10

int m=4, n= 3;
int i, k = 3;

float *p graux, *p_gr;
float tol = 1.e-4;
int *kbasis;

float *x, *p res;

/* Factor A with the given pvt */
/* setting all variables to */
/* be imsl free */
imsl f lin least squares gen (m, n,
IMSL BASIS, tol, &kbasis,
IMSL PIVOT, pvt,
IMSL FACTOR, &p graux, &p_dr,
IMSL FACTOR ONLY,
0);

0.2236

17.001,
.0,
.99},

a, b,

=RogueWave

lin_least_squares_gen

Chapter 1 Linear Systems

220

/* Print some factorization */
/* information*/
printf ("Number of Columns in the base\n%2d", kbasis);

imsl f write matrix ("Upper triangular R Matrix", m, n, p gr,
IMSL PRINT UPPER,
0)s

imsl i write matrix ("The output column order ", 1, n, pvt,
0)s

/* Solve Ax = b for each x */

/* given the factorization */

for (1 =0; 1 < k; i++) {

x = imsl f lin least squares gen (m, n, a, &b[i*m],

IMSL BASIS, tol, &kbasis,
IMSL_P IVOT, pvt,
IMSL FACTOR USER, p_ draux, p_dJr,
IMSL RESIDUAL, &p_res,
IMSL SOLVE ONLY,
0);

/* Print right-hand side, b */

/* and solution, x */

imsl f write matrix ("Right-hand side, b ", 1, m, &b[i*m],
0);

imsl f write matrix ("Solution, x ", 1, n, x, 0);

/* Print residuals, b - Ax */
imsl f write matrix ("Residual, b - Ax ", 1, m, p res,

0);

}

Output
Number of Columns in the base
3
Upper triangular R Matrix

1 2 3
1 -75.26 -10.63 -1.59
2 -2.65 -1.15
3 0.36

The output column order
1 2 3
3 2 1

Right-hand side, Db
1 2 3 4
5 9 13 17

= R{nggmq\{q lin_least_squares_gen Chapter 1 Linear Systems 221

Solution, x
1 2 3
0.999 2.000 0.000

Residual, b - Ax
1 2 3 4
-0.0004 0.0012 -0.0012 0.0004

Right-hand side, Db
1 2 3 4
2.000 3.142 5.110 0.000

Solution, x
1 2 3
-4.244 3.706 -0.391

Residual, b - Ax
1 2 3 4
0.395 -1.186 1.186 -0.395

Right-hand side, b
1 2 3 4
1.34 8.11 3.76 10.99

Solution, x
1 2 3
0.4735 0.9437 0.0286

Residual, b - Ax

1 2 3 4
-1.135 3.406 -3.406 1.135

Fatal Errors

IMSL SINGULAR TRI MATRIX The input triangular matrix is singular. The index of
the first zero diagonal term is #.

= ROQEJ?WH\{E: lin_least_squares_gen Chapter 1 Linear Systems 222

nonneg_least_squares

Compute the non-negative least squares (NNLS) solution of an m x n real linear least squares system, Ax = b,

x>0.

Synopsis
#include <imsl.h>
float *ims1l f nonneg least squares (intm, intn, floatal[],floatb[],..., 0)

The type double functionis ims1l d nonneg least squares.

Required Arguments

intm (Input)
The number of rows in the matrix.

intn (Input)
The number of columns in the matrix.

floata[] (Input)
An array of length m X n containing the matrix.

floatb[] (Input)
An array of length m containing the right-hand side vector.

Return Value

An array of length n containing the approximate solution vector, x = 0.

Synopsis with Optional Arguments
#include <ims1l.h>
float *ims1 f nonneg least squares (intm intn, floata[],floatb[],
IMSL ITMAX, int itmax,
IMSL DROP MAX POS DUAL,intmaxdual,
IMSL_DROP_TOLERANCE,ﬂOGt tol,
IMSL SUPPLY WORK_ ARRAYS,int lwork, floatwork[],int 1iwork, int iwork[],

IMSL OPTIMIZED,int*iflag,

= R{ng?mq\{q nonneg_least_squares Chapter 1 Linear Systems 223

IMSL DUAL SOLUTION, float **dual,

IMSL DUAL SOLUTION USER, floatuduall],
IMSL RESIDUAL NORM, float *rnorm,

IMSL RETURN USER, floatx[],

0)

Optional Arguments

IMSL ITMAX, int itmax (Input)
The number of times a constraint is added or dropped should not exceed this maximum value. An
approximate solution x = 0 is returned when the maximum number is reached.
Default: itmax =3 X n.

IMSL DROP MAX POS DUAL, intmaxdual (Input)
Indicates how a variable is moved from its constraint to a positive value, or dropped, when its current
dual value is positive. By dropping the variable corresponding to the first computed positive dual
value, instead of the maximum, better runtime efficiency usually results by avoiding work in the early
stages of the algorithm.
Ifmaxdual = 0, the first encountered positive dual is used. Otherwise, the maximum positive dual, is
used. The results for x = 0 will usually vary slightly depending on the choice.
Default: maxdual =0

IMSL_DROP_TOLERANCE,f/OGt tol (Input)
This is a rank-determination tolerance. A candidate column

i)

has values eliminated below the first entry of ¢ . The resulting value must satisfy the relative condition

a=

ldll, > tol > llcll,

Otherwise the constraint remains satisfied because the column g is linearly dependent on previously
dropped columns.
Default: tol = sqrt(imsl f machine (3))

IMSL SUPPLY WORK ARRAYS,int lwork, floatwork[],int 1iwork, int iwork[] (Input/Output)
The use of this optional argument will increase efficiency and avoid memory fragmentation run-time
failures for large problems by allowing the user to provide the sizes and locations of the working
arrays work and iwork. With maxt as the maximum number of threads that will be active, it is
required that:

lwork >maxt* (m* (n+2) + n),and liwork>maxt*n.

Without the use of OpenMP and parallel threading, maxt=1.

= R{nggmq\{q nonneg_least_squares Chapter 1 Linear Systems 224

IMSL OPTIMIZED, int*flag (Output)

A 0-1 flag noting whether or not the optimum residual norm was obtained. A value of 1 indicates the

optimum residual norm was obtained. A value of 0 occurs if the maximum number of iterations was

reached.

flag

Description

0

the maximum number of iterations was reached.

1

the optimum residual norm was obtained.

IMSL DUAL SOLUTION, float **dual (Output)

An array of length n containing the dual vector, w = AT<Ax - b). This may not be optimal (all com-

ponents may not satisfy w < (), if the maximum number of iterations occurs first.

IMSL DUAL SOLUTION USER, floatduall[] (Output)
Storage for dual provided by the user. See IMSL. DUAL SOLUTION.

IMSL_RESIDUAL_NORM, ﬂoat *rnorm (Output)
The value of the residual vector norm, [|Ax=bl|>.

IMSL RETURN USER, float x[] (Output)
A user-allocated array of length n containing the approximate solution vector, x >0 .

Description

Function imsl f nonneg least squares computes the constrained least squares solution of Ax = b,
by minimizing ||Ax-bl|, subject to x > 0 . It uses the algorithm NNLS found in Charles L. Lawson and Richard J.
Hanson, Solving Least Squares Problems, SIAM Publications, Chap. 23, (1995). The functionality for multiple

threads and the constraint dropping strategy are new features. The original NNLS algorithm was silent about mul-
tiple threads; all dual components were computed when only one was used. Using the first encountered eligible
variable to make non-active usually improves performance. An optimum solution is obtained in either approach.

There is no restriction on the relative sizes of m and n.

Examples

Example 1

A model function of exponentials is

f(t) =c t czexp<—/12t> + c3exp<—l3t>, t>0

The exponential function argument parameters

are fixed. The coefficients

12:1,23:5

=RogueWave

nonneg_least_squares

Chapter 1 Linear Systems

225

CjZO,j: 1,2,3
are estimated by sampling data values,

f(t,-), i=1,.21
using non-negative least squares. The values used for the data are
t;=0.25i,i=0,..20

with

c1 = 1, CH = 02, C3 =03

#include <imsl.h>
#include <math.h>

#define M 21
#define N 3

int main() {
int 1i;
float a[M][N], b[M], *c;

for (1 = 0; 1 < M; 1i++) {
/* Generate exponential values. This model is
y(t) = c 0 + c l*exp(-t) + c 2%exp(-5*t) */

alil[0] = 1.0;
alil[1] = exp(-(i*0.25));
i exp (- (1i*0.25)*5.0);

Q

[

N
Il

/* Compute sample values */
b[i] = a[i][0] + 0.2*af[i][1l] + 0.3*a[i][2];
}

/* Solve for coefficients, constraining values
to be non-negative. */
¢ = imsl f nonneg least squares(M, N, &a[0][0], b, 0);

/* With noise level = 0, solution should be (1, 0.2, 0.3) */
imsl f write matrix("Coefficients", 1, N, c, 0);

}

Output
Coefficients
1 2 3
1.0 0.2 0.3

= R{ng?mq\{q nonneg_least_squares Chapter 1 Linear Systems 226

Example 2

The model function of exponentials is

f(t)=¢ +c2exp<—/12t) +c3exp<—/13t) +n(1),1>0

The values Ay, A5 are the same as in Example 1. The function n (t) represents normally distributed random noise

with a standard deviation ¢ = 10 > . A simulation is done with ns = 10001 samples for n (t). The resulting problem
is solved using OpenMP. To check that the OpenMP results are correct, a loop computes the solutions without
OpenMP followed by the same loop using OpenMP. The residual norms agree, showing that the routine returns
the same values using OpenMP as without using OpenMP.

#include <imsl.h>
#include <stdio.h>
#include <stdlib.h>
#include <math.h>
#include <omp.h>

#define M 21
#define N 3
#define NS 10001

int main() {

#define BS(i ,J) bs[(1)*M + (J)]

#define X (i ,3) X[(1)*N + (3)]
int thread safe=1, seed=123457, i, *iwork, Jj, lwork, liwork, maxt;
float b[M], *work, sigma=1.0e-3, a[M]I[N], rseq[NS], rpar[NS],

*bs, *x;

/* Allocate work memory for all threads that are
used in the loops below. */

maxt = omp get max threads();

lwork = maxt* (M* (N+2)+N) ;

liwork = maxt*N;

work = (float *) malloc(lwork * sizeof(float));
iwork = (int *) malloc (liwork * sizeof (int)):;

x = (float *) malloc (NS*N * sizeof (float));

bs = (float *) malloc (NS*M * sizeof(float));

for (1 = 0; 1 < M; i++) {
/* Generate matrix values.
This model is y(t) =
c 0+ c l*exp(-t) + c 2%exp(-5*t) + n(t) */

a[i][0] = 1.0;
alil[1] = exp(-(1*0.25));
alil[2] = exp(-(i*0.25)*5.0);

= R{nggmq\{q nonneg_least_squares Chapter 1 Linear Systems 227

/* Solve for coefficients, constraining values to be non-negative.
First use a sequential for loop. Then a parallel for loop.
Record the residual norms and compare them. */

imsl random seed set (seed);
/* First the sequential loop.
Working memory is not included as an argument. */
for (j = 0; 3 < NS; j++) {
imsl f random normal (M, IMSL RETURN USER, b, 0);

/* Add normal pdf noise at the level sigma. */

for (i=0; i<M; 1i++) {
b[i] = sigma*b[i] + a[i][0] + 0.2*a[i][1l] + 0.3*al[i]l[2];
BS(j,1) = bli];

imsl f nonneg least squares (M, N, &al[0][0], &BS(j,0),
IMSL RETURN USER, &X(3,0),
IMSL RESIDUAL NORM, &rseqljl,
0)7;

/* Then the parallel for loop using OpenMP.
Working memory is an optional argument. This is not required
but helps prevent memory fragmentation. */

/* Reset x for output for the OpenMP loop. */
for (i = 0; 1 < NS*N; i++)
x[1] = 0.0;

#pragma omp parallel for private(j)
for (j = 0; jJ < NS; j++) {
imsl f nonneg least squares(M, N, &al[0][0], &BS(3j,0),
IMSL RETURN USER, &X(j,0),
IMSL_RESIDUAL_NORM, &rpar[jl,
IMSL SUPPLY WORK ARRAYS, lwork, work, liwork, iwork,
0);

/* Check that residual norms agree exactly for both loops. They
should because the same problems are solved - one set
sequentially and the next set in parallel. */

for (3 = 0; j < NS; J++) {

/* Since the two loops solve the same set of problems, the
residual norms must agree exactly. */

if (rpar[j] !'= rseql[jl) {
thread safe = 0;
break;

= R{ng?mq\{q nonneg_least_squares Chapter 1 Linear Systems 228

if (thread safe)
printf ("imsl f nonneg least squares is thread-safe.\n");

else
printf ("imsl f nonneg least squares is not thread-safe.\n");

system ("pause") ;

Output

imsl f nonneg least squares is thread-safe.

Warning Errors

The maximum number of iterations was reached. The
best answer will be returned. “i tmax” = # was used. A
larger value may help the algorithm complete.

IMSL MAX NNLS ITER REACHED

= R{ng?mg\{q nonneg_least_squares Chapter 1 Linear Systems 229

in_Isqg_lin_constraints

Solves a linear least-squares problem with linear constraints.

Synopsis
#include <ims1.h>

float *imsl f 1in 1sg lin constraints (intnra,intnca,intncon, floatal], floatb[],
floatc[1,floatbl], floatbul],intcon typel], float x1b[], float xub[], .., 0)

The type double functionis imsl d lin 1lsg 1lin constraints.

Required Arguments

intnra (Input)
Number of least-squares equations.

int nca (Input)
Number of variables.

int ncon (Input)
Number of constraints.

floata[] (Input)
Array of size nra x nca containing the coefficients of the nra least-squares equations.

floatb[] (Input)
Array of length nra containing the right-hand sides of the least-squares equations.

float c[] (Input)
Array of size ncon X nca containing the coefficients of the ncon constraints.

floatbl 1 (Input)
Array of length ncon containing the lower limit of the general constraints. If there is no lower limit on

the i-th constraint, then b1[i] will not be referenced.

floatbul] (Input)
Array of length ncon containing the upper limit of the general constraints. If there is no upper limit

on the i-th constraint, then bu[i] will not be referenced. If there is no range constraint, b1l and bu

can share the same storage.

intcon typel] (Input)
Array of length ncon indicating the type of constraints exclusive of simple bounds, where
con_type[i]=0, 1, 2, 3 indicates =, <=, >= and range constraints, respectively.

= ROQ}J?WH\{E: lin_Ilsq_lin_constraints Chapter 1 Linear Systems 230

float x1b[]1 (Input)
Array of length nca containing the lower bound on the variables. If there is no lower bound on the
i-th variable, then x1b[i] should be set to 1.0e30.

float xub [] (Input)
Array of length nca containing the upper bound on the variables. If there is no lower bound on the
i-th variable, then xub[1i] should be set to —1.0e30.

Return Value

A pointer to the to a vector of length nca containing the approximate solution. To release this space, use
imsl free.If no solution was computed, then NULL is returned.

Synopsis with Optional Arguments
#include <ims1l.h>

float *imsl f 1in 1sqg lin constraints (intnra,intnca,intncon, floatal], floatb[],
floatc[1,floatbl[], floatbul],intcon typel], float x1b[], float xub[],

IMSL RETURN USER, floatx[],

IMSL RESIDUAL, float **residual,

IMSL RESIDUAL USER, float residual user[],
IMSL PRINT,

IMSL ITMAX, intmax iter,

IMSL REL FCN TOL, float rel tol,

IMSL ABS_ FCN_TOL, float abs_ tol,

0)

Optional Arguments

IMSL RETURN USER, float x[] (Output)
Store the solution in the user supplied vector x of length nca.

IMSL RESIDUAL, float **residual (Output)
The address of a pointer to an array containing the residuals b — Ax of the least-squares equations at
the approximate solution.

IMSL RESIDUAL USER, float residual user[] (Output)
Store the residuals in the user-supplied vector of length nra.

= ROQ}J?WH\{E: lin_Ilsq_lin_constraints Chapter 1 Linear Systems 231

IMSL PRINT,
Debug output flag. Choose this option if more detailed output is desired.

IMSL ITMAX, intmax_ iter (Input)
Set the maximum number of add/drop iterations.

Default max _iter = 5*max(nra, nca)

IMSL _REL FCN_TOL, float rel tol (Input)
Relative rank determination tolerance to be used.
Default: rel tol = sqgrt(imsl f machine(4))

IMSL ABS FCN TOL, float abs tol (Input)
Absolute rank determination tolerance to be used.
Default: abs_tol = sqgrt(imsl f machine(4))

Description

The function imsl f 1lin 1sqg lin constraints solves linear least-squares problems with linear con-
straints. These are systems of least-squares equations of the form

Ax=b
subject to
by <Cx <by
X] <X < Xy

Here A is the coefficient matrix of the least-squares equations, b is the right-hand side, and C is the coefficient
matrix of the constraints. The vectors b;, b, X, and x, are the lower and upper bounds on the constraints and the

variables, respectively. The system is solved by defining dependent variables y = Cx and then solving the least-
squares system with the lower and upper bounds on x and y. The equation Cx — y = 0 is a set of equality con-
straints. These constraints are realized by heavy weighting, i.e., a penalty method, Hanson (1986, pp. 826-834).

Examples

Example 1
In this example, the following problem is solved in the least-squares sense:
3x1 + 2%, + X3 =3.3
4x1 +2X + X3 = 2.2
21+ 2% + X3 =1.3
X1+ X +x3=1.0
Subject to

X1:X2+X3S1

= R{ng?mq\{q lin_Isq_lin_constraints Chapter 1 Linear Systems 232

0=<x1 <05

0=<x,<05
0<x3<05
#include <imsl.h>
int main ()
{
int nra = 4;
int nca = 3;
int ncon = 1;
float *x;
float al] = {3.0, 2.0, 1.0,
4.0, 2.0, 1.0,
2.0, 2.0, 1.0,
1.0, 1.0, 1.0};
float Db[] = {3.3, 2.3, 1.3, 1.0};
float «c¢[] = {1.0, 1.0, 1.0};
float x1b[] = {0.0, 0.0, 0.0};
float =xub[] = {0.5, 0.5, 0.5};
int con_typel[] = {1};

float bc[] = {1.0};

x = imsl f 1lin 1sg lin constraints (nra, nca, ncon, a,
bc, bc, con type, xlb, xub,

0) 7
imsl f write matrix ("Solution", 1, nca, X,
0);
}
Output
Solution
1 2 3
0.5 0.3 0.2
Example 2

The same problem solved in the first example is solved again. This time residuals of the least-squares equations

b, c,

at the approximate solution are returned, and the norm of the residual vector is printed. Both the solution and

residuals are returned in user-supplied space.

#include <imsl.h>
#include <stdio.h>

int main ()

{
int nra = 4;
int nca = 3;

=RogueWave

lin_Ilsq_lin_constraints

Chapter 1 Linear Systems

233

int ncon = 1;
float x[3];
float residuall4];
float al] = {3.0, 2.0, 1.0,
4.0, 2.0, 1.0,
2.0, 2.0, 1.0,
1.0, 1.0, 1.0};
float b[] = {3.3, 2.3, 1.3, 1.0};
float «c¢[] = {1.0, 1.0, 1.0};
float x1b[] = {0.0, 0.0, 0.0};
float xub[] = {0.5, 0.5, 0.5};
int con typel[] = {1};
float bc[] = {1.0};
imsl f lin l1sg lin constraints (nra, nca, ncon, a, b, c,
bc, bc, con type, x1b, xub,
IMSL RETURN USER, x,
IMSL_RESIDUAL_USER, residual,
0);
imsl f write matrix ("Solution", 1, nca, x, 0);
imsl f write matrix ("Residual", 1, nra, residual, 0);
printf ("\n\nNorm of residual = %$f\n",

imsl f vector norm (nra,

Output

Solution

1 2

0.5 0.3
Residual

1 2

-1.0 0.5
Norm of residual = 1.224745

Fatal Errors

IMSL_BAD COLUMN ORDER
IMSL_BAD POLARITY FLAGS

IMSL_TOO MANY ITN

residual, 0));

3
.2
3 4
5 -0.0

The input order of columns must be between 1 and
“nvar” while input order = # and “nvar” = # are given

The bound polarity flags must be positive while com-
ponent # flag “ibb[#]".

Maximum numbers of iterations exceeded.

=RogueWave

lin_Ilsq_lin_constraints Chapter 1 Linear Systems

234

nonneg_matrix_factorization

OpenMP

more. ..

Given anm x preal matrix 4 > 0, and an integer k < min(m, n) , compute a factorization 4 = FG. The
matrix factors F,x = 0, Gy, = 0 are computed to minimize the Frobenius, or sum of squares, norm of the
error matrix. £ = {ei’ .i} =A-FG
Synopsis

#include <ims1l.h>

float ims1 f nonneg matrix factorization (intm, intn,intk, floata[],float £[],floatgl[],
... 0)

The type double function is ims|_d_nonneg_matrix_factorization.

Required Arguments

intm (Input)
The number of rows in the matrix.

int n (Input)
The number of columns in the matrix.

int k (Input)
The number of columns in the matrix F and rows in the matrix G.

floata[] (Input)
An array of length m X n containing the A matrix.

float £ 1 (Input/Output)
An array of length m X k containing the F matrix. If IMSL_INITIAL FACTORS is used, the sweeps

begin using the input values for F,. > 0.

float g[1 (Output)
An array of length k X n containing the G matrix.

Return Value

A scalar containing the Frobenius norm of the error matrix

= Rogygmq\{q nonneg_matrix_factorization Chapter 1 Linear Systems 235

5 \12
E:error = Zei’j
I, j
Synopsis with Optional Arguments
#include <ims1.h>
float ims1 f nonneg matrix factorization (intm intn,intk, floata(],float £[1,floatg[],
IMSL_WEIGHT,ﬂOGt wl],
IMSL INITIAL FACTORS, int factors,
IMSL ITMAX, int itmax,
IMSL RESIDUAL ERROR, f/OGt err,
IMSL RELATIVE ERROR, f/OGt rerr,
IMSL STOPPING CRITERION, int *reason,
IMSL NSTEPS TAKEN, int *nsteps,

0)

Optional Arguments

IMSL WEIGHT, floatw[] (Input)

An array of length m X n containing the matrix W = 0 of weights that will be applied to the entries of
A = 0 during the solution sweeps. The factorization obtained is FG =W o A, where the weights are
applied element-wise.

Default: Weights are not applied, or equivalently, the weights all have value 1.

IMSL INITIAL FACTORS, int factors (Input)
A flag that signifies if the matrix Fis given an input estimate. If factors =0, start sweeps using

1

0
Otherwise, use initial values in £ as the matrix F to start the sweeps.
Default: factors =0

IMSL ITMAX, int itmax (Input)
The maximum number of sweeps allowed for alternately solving for G > 0, then F > 0.
Default: itmax=2*m+n+1)

= ROQ}J?WH\{E: nonneg_matrix_factorization Chapter 1 Linear Systems 236

IMSL RESIDUAL ERROR, floaterr (Input)
A scalar that will stop the sweeps at the first one satisfying error < err.
Default: err =0

IMSL RELATIVE ERROR, float rerr (Input)
A scalar that will stop the sweeps at the first one satisfying

errOf oy = €lTOrjter 1 < I€rr X errofie,, iter >2.
This test is made after three values of the error matrix norm have been computed. The sequence
{errorq) is decreasing with increasing values of the iteration counter, iter. If erroriiar = €rrorier—1

occurs, the sweeps stop.

Default: rerr = (ims l_f_machine(B))OA‘

IMSL STOPPING CRITERION,int *reason (Output)
This flag has the value 0,1,2 or 3 depending on which of the following conditions stopped the sweeps:

reason |Description
0 Errors in user input occurred
1 Reached maximum iterations
2 Residual norm is small
3 Relative error convergence

IMSL NSTEPS TAKEN, int *nsteps (Output)
The last value of the iteration count, jter, that gives the number of sweeps.

Description

Function ims1 f nonneg matrix factorization computesanapproximation 4 = FG, or with
weights, W o A = FG; the factors are constrained: F,x; = 0, Gy, > 0. The matrix factors F,x; = 0, Gyx, > 0 are

computed to minimize the Frobenius or sum of squares, norm of the error matrix: E= {ei’ j} =A-FG

The algorithm is based on Alternating Least Squares, presented by P. Paatero and U. Tapper,
“Positive Matrix Factorization, etc.” Environmetrics, (5), p. 111-126 (1994).

Each constrained least squares problem is solved using ims1 f nonneg least squares. This process alter-
nates between computing the batch of x columns of G and then the batch of @ rows of F'. This constitutes a
“sweep.”

There is no restriction on the relative sizes of m and x . The restrictions on the integer k are

0<k< min(m, ”l> . When an initial matrix G is to be used, instead of an initial F, repose the factorization in

transposed form A7 = G'F", or with weights, A" o W' = G'F.

= R{ng?mq\{q nonneg_matrix_factorization Chapter 1 Linear Systems 237

The matrix factors F, G are not unigue. In the function, the output rows of G are scaled to have sum equal to
the value 1. The scaled columns of F are sorted so the column sums are non-increasing. This sort order is then

applied to the rows of G .

Example

Five customers, Beth, Dick, Fred, Joe and Kay make purchases at a convenience store.

Flour Balloons Beer Sugar Chips
Beth 3 8 1
Dick 2 5 1
Fred 5 1 10
Joe 20 40 2 1
Kay 10 1 10 1

This matrix 4sxs of customers versus items purchased is approximated by a non-negative matrix factorization,

using k=2: A = FG . The example is taken from one due to H. Jin and M. Saunders, “Exploring Nonnegative
Matrix Factorization,” A Workshop on Algorithms for Massive Data Sets, Stanford University, June 25-28, (2008).

#include <imsl.h>
#include <stdio.h>

#define M 5
#define N 5
#define K 2

int main () {
float a[M] [N]= {
{ o0, 3, 8, 0, 1%},
{0, 2, 5, 1, 0},
{5, 0, 1, 10, O},
{ 0, 20, 40, 2, 1},
{10, 0, 1, 10, 1}

}i
float error, f£[M*K], g[K*N];
int nsteps, reason;

/* Solve for factors, constraining values to be non-negative.
Get reason for stopping and number of sweeps. */
error = imsl f nonneg matrix factorization(M, N, K,
IMSL STOPPING CRITERION, &reason,
IMSL NSTEPS TAKEN, &nsteps,
0)s

&al0][0], £, g,

imsl f write matrix("Matrix Factor F", M, K, £, 0);
imsl f write matrix("Matrix Factor G", K, N, g, 0);

nonneg_matrix_factorization Chapter 1 Linear Systems

=RogueWave

238

printf ("\nFrobenius Norm of E=A-F*G is %e\n", error);
printf ("Reason for stopping sweeps: %d\n", reason);
printf ("Number of sweeps taken: %d\n", nsteps);

Output
Matrix Factor F

1 2
1 11.96 0.00
2 7.51 0.94
3 0.33 16.61
4 62.90 0.13
5 0.00 21.35

Matrix Factor G

1 2 3 4 5
1 0.0000 0.3150 0.6373 0.0298 0.0178
2 0.4048 0.0000 0.0473 0.5190 0.0288

Frobenius Norm of E=A-F*G is 3.195350e+000
Reason for stopping sweeps: 3
Number of sweeps taken: 10

= R{ng?mq\{q nonneg_matrix_factorization Chapter 1 Linear Systems 239

in_svd_gen

more. ..

Computes the SVD, A = USV', of a real rectangular matrix A. An approximate generalized inverse and rank of A

also can be computed.

Synopsis
#include <imsl.h>
float *ims1l f 1in svd gen(intm, intn, floatal], .., 0)

The type double procedureis ims1 d lin svd gen.

Required Arguments

intm (Input)
Number of rows in the matrix.

intn (Input)
Number of columns in the matrix.

floata[] (Input)
Array of size m X n containing the matrix.

Return Value

If no optional arguments are used, ims1 f 1in svd gen returns a pointer to an array of size min (m, n) con-

taining the ordered singular values of the matrix. To release this space, use ims1 free. If no value can be

computed, then NULL is returned.

Synopsis with Optional Arguments
#include <ims1l.h>
float *imsl f 1in svd gen (intm, intn, floatal],
IMSL A COL DIM inta col dim,

IMSL RETURN USER,floats[],

EE R{ng?mg\(e: lin_svd_gen

Chapter 1 Linear Systems

240

IMSL RANK, float tol, int *rank,

IMSL U, float **p u,

IMSL U USER,floatul],

IMSL U COL DIM intu col dim,

IMSL V, float **p v,

IMSL_V USER,floatv[],

IMSL V_COL DIM intv col dim,

IMSL INVERSE, float **p gen inva,

IMSL INVERSE USER, floatgen invall,
IMSL INV COL DIM, intgen inva col dim,

0)

Optional Arguments

IMSL A COL DIM, inta col dim (Input)
The column dimension of the array a.
Defaultta_col dim=n

IMSL RETURN USER, float s [] (Output)
A user-allocated array of size min (m+7, n) containing the singular values of A in its first min (m, n)
positions in nonincreasing order. If IMSL RETURN USER is used, the return value of

imsl £ lin svd geniss.
IMSL RANK, float tol, int *rank (Input/Output)

float tol (Input)
Scalar containing the tolerance used to determine when a singular value is negligible and
replaced by the value zero. If tol > 0, then a singular value s;; is considered negligible if
Sij < tol.Iftol <0, thenasingularvalues;;is considered negligible if s;; < [tol|*||All . In this

case, |tol] should be an estimate of relative error or uncertainty in the data.

int *rank (Input/Output)
Integer containing an estimate of the rank of A.

IMSL U, float **p u (Output)
**p u: The address of a pointer to an array of size m x min (m, n) containing the min (m, n) left-singu-
lar vectors of A. On return, the necessary space is allocated by ims1 £ 1in svd gen. Typically,
float *p_uis declared, and &p_u is used as an argument.

= R{nggmq\{q lin_svd_gen Chapter 1 Linear Systems

241

IMSL U USER, floatu[] (Output)
u[]: The address of a pointer to an array of size m x min (m, n) containing the min (m, n) left-singular
vectors of A. If m = n, the left-singular vectors can be returned using the storage locations of the array

a.

IMSL U COL DIM, intu col dim (Input)
The column dimension of the array containing the left-singular vectors.
Default: u_col dim=min (m, n)

IMSL V, float **p v (Output)
**p v: The address of a pointer to an array of size n x n containing the right singular vectors of A.
On return, the necessary space is allocated by ims1 £ 1in svd gen. Typically, float *p v is
declared, and &p_v is used as an argument.

IMSL V USER, floatv[] (Output)
v []: The address of a pointer to an array of size n X n containing the right singular vectors of A. The
right-singular vectors can be returned using the storage locations of the array a. Note that the return
of the left- and right-singular vectors cannot use the storage locations of a simultaneously.

IMSL V_COL _DIM, intv_col dim (Input)
The column dimension of the array containing the right-singular vectors.
Default: v_col dim=n

IMSL INVERSE, float **p gen inva (Output)
The address of a pointer to an array of size n x m containing the generalized inverse of the matrix A.
On return, the necessary space is allocated by ims1 f 1in svd gen. Typically,
float *p _gen invaisdeclared, and &p gen invais used as anargument.

IMSL INVERSE USER, floatgen inva[] (Output)
A user-allocated array of size n x m containing the general inverse of the matrix A.

IMSL INV COL DIM intgen inva col dim (Input)
The column dimension of the array containing the general inverse of the matrix A.

Default: gen_inva col dim=m

Description

The function ims1 f 1in svd gen computes the singular value decomposition of a real matrix A. It first
reduces the matrix A to a bidiagonal matrix B by pre- and post-multiplying Householder transformations. Then,
the singular value decomposition of B is computed using the implicit-shifted QR algorithm. An estimate of the
rank of the matrix A is obtained by finding the smallest integer k such that s, < tol or sy < [tol|*||All . Since

Si+1,i+1 < Sj;, it follows that all the s;; satisfy the same inequality for i = k, .., min (m, n) — 1. The rank is set to the

value k — 1. If A= USV', its generalized inverse is A" = V§* U". Here,

= Rogygmq\{q lin_svd_gen Chapter 1 Linear Systems

242

S+=diag<s111, ,SZIZ-, 0, ... ,O)

Only singular values that are not negligible are reciprocated. If IMSL INVERSE or IMSL INVERSE USERIs
specified, the function first computes the singular value decomposition of the matrix A. The generalized inverse is
then computed. The function ims1 £ 1in svd gen fails if the QR algorithm does not converge after 30 iter-
ations isolating an individual singular value.

Examples

Example 1

This example computes the singular values of a real 6 x 4 matrix.

#include <imsl.h>

float al] = {1.0, 2.0, 1.0, 4.0,
3.0, 2.0, 1.0, 3.0,
4.0, 3.0, 1.0, 4.0,
2.0, 1.0, 3.0, 1.0,
1.0, 5.0, 2.0, 2.0,
1.0, 2.0, 2.0, 3.0};
int main ()
{
int m= 6, n = 4;
float *s;
/* Compute singular values */
s = imsl f 1lin svd gen (m, n, a, 0);
/* Print singular values */
imsl f write matrix ("Singular values", 1, n, s, 0);
}
Output
Singular values
1 2 3 4
11.49 3.27 2.65 2.09

Example 2

This example computes the singular value decomposition of the 6 x 4 real matrix A. The singular values are
returned in the user-provided array. The matrices U and V are returned in the space provided by the function
imsl £ lin svd gen.

#include <imsl.h>

float al] = {1.0, 2.0, 1.0, 4.0,

= Rogypmq\{q lin_svd_gen Chapter 1 Linear Systems 243

3.0, 2.0, 1.0, 3.0,
4.0, 3.0, 1.0, 4.0,
2.0, 1.0, 3.0, 1.0,
1.0, 5.0, 2.0, 2.0,
1.0, 2.0, 2.0, 3.0};
int main ()
{
int m= 6, n = 4;
float s[4], *p u, *p v;

/* Compute SVD */
imsl £ lin svd gen (m, n, a,
IMSL RETURN USER, s,
IMSL U, &p u,
IMSL V, &p v,
0) 7
/* Print decomposition*/

imsl f write matrix ("Singular values, S", 1, n, s, 0);

imsl f write matrix ("Left singular vectors, U", m, n, p u, 0);
imsl f write matrix ("Right singular vectors, V", n, n, p v, 0);
}
Output
Singular values, S
1 2 3 4
11.49 3.27 2.65 2.09

Left singular vectors, U

1 2 3 4
1 -0.3805 0.1197 0.4391 -0.5654
2 -0.4038 0.3451 -0.0566 0.2148
3 -0.5451 0.4293 0.0514 0.4321
4 -0.2648 -0.0683 -0.8839 -0.2153
5 -0.4463 -0.8168 0.1419 0.3213
6 -0.3546 -0.1021 -0.0043 -0.5458

Right singular vectors, V

1 2 3 4
1 -0.4443 0.5555 -0.4354 0.5518
2 -0.5581 -0.6543 0.2775 0.4283
3 -0.3244 -0.3514 -0.7321 -0.4851
4 -0.6212 0.3739 0.4444 -0.5261
Example 3

This example computes the rank and generalized inverse of a 3 X 2 matrix A. The rank and the 2 x 3 generalized

inverse matrix A* are printed.

= R{nggmq\{q lin_svd_gen Chapter 1 Linear Systems 244

#include <imsl.h>
#include <stdio.h>

float al[] =
{1.0, 0.0,
1.0, 1.0,
100.0, -50.0};
int main ()
{
int m= 3, n= 2;
float tol;
float gen inval6];
float *s;
int rank;

/* Compute generalized inverse */
tol = 1.e-4;

s = imsl f 1lin svd gen (m, n, a,
IMSL RANK, tol, &rank,
IMSL INVERSE USER, gen inva,
IMSL INV_COL DIM, m,
0);

/* Print rank, singular values and */
/* generalized inverse. */
printf ("Rank of matrix = %2d", rank);

imsl f write matrix ("Singular values", 1, n, s, 0);
imsl f write matrix ("Generalized inverse", n, m, gen inva,
IMSL_A COL DIM, m,
0);
}
Output

Rank of matrix = 2
Singular values

1 2

111.8 1.4

Generalized inverse

1 2 3
1 0.100 0.300 0.006
2 0.200 0.600 -0.008

= R{ng?mq\{q lin_svd_gen Chapter 1 Linear Systems 245

Warning Errors

IMSL SLOWCONVERGENT MATRIX Convergence cannot be reached after 30 iterations.

= RO gy?ﬂq\{q lin_svd_gen Chapter 1 Linear Systems 246

in_svd_gen (complex)

more. ..

Computes the SVD, A = USV, of a complex rectangular matrix A. An approximate generalized inverse and rank of
A also can be computed.

Synopsis
#include <imsl.h>
fcomplex *imsl c 1in svd gen (intm,intn, f complexal], .., 0)

The type d_complex function is ims1 z 1lin svd gen.

Required Arguments

intm (Input)
Number of rows in the matrix.

intn (Input)
Number of columns in the matrix.

f.complex a[] (Input)
Array of size m x n containing the matrix.

Return Value

Using only required arguments, ims1 ¢ 1lin svd gen returns a pointer to a complex array of length
min (m, n) containing the singular values of the matrix. To release this space, use ims1 free. If novalue can be
computed then NULL is returned.

Synopsis with Optional Arguments
#include <imsl.h>
fcomplex *imsl ¢ 1lin svd gen (intm,intn, f complexal[],

IMSL A COL DIM, inta col dim,

= Rogygmq\f‘e; lin_svd_gen (complex) Chapter 1 Linear Systems 247

IMSL RETURN USER, fcomplexs|[],

IMSL RANK, float tol, int *rank,

IMSL U, f complex **p_u,

IMSL U USER,fcomplexul[],
IMSL U COL DIM, intu col dim,

IMSL_V, f complex **p v,

IMSL V USER, fcomplexv[],

IMSL V_COL DIM,intv col dim,

IMSL INVERSE, fcomplex **p gen inva,
IMSL INVERSE USER,f complex gen inval],
IMSL INV COL DIM, intgen inva col dim,

0)

Optional Arguments

IMSL A COL DIM, inta col dim (Input)
The column dimension of the array a.
Defaultta_col dim=n

IMSL RETURN USER, f.complex s[] (Output)
A user-allocated array of length min (m, n) containing the singular values of A in its first min (m, n) posi-
tions in nonincreasing order. The complex entries are all real. If IMSL RETURN USER is used, the
returnvalue of imsl ¢ lin svd geniss.

IMSL RANK, float tol, int *rank (Input/Output)

float tol (Input)
Scalar containing the tolerance used to determine when a singular value is negligible and
replaced by the value zero. If tol > 0, then a singular value s;; is considered negligible if
s < tol.If tol <0, then asingular value s;; is considered negligible if 5;; < [to1[*||All «. In this
case, should be an estimate of relative error or uncertainty in the data.

int *rank (Input/Output)
Integer containing an estimate of the rank of A.

= R{ng?mq\{q lin_svd_gen (complex) Chapter 1 Linear Systems 248

IMSL U, f complex **p_u (Output)
The address of a pointer to an array of size m X min (m, n) containing the min (m, n) left-singular vec-
tors of A. On return, the necessary space is allocated by ims1 ¢ 1in svd gen. Typically,
f.complex *p_uis declared, and &p_u is used as an argument.

IMSL U USER,fcomplexu[] (Output)
The address of a pointer to an array of size m X min (m, n) containing the min (m, n) left-singular vec-
tors of A. If m = n, the left-singular vectors can be returned using the storage locations of the array a.

IMSL U COL _DIM, intu_col dim (Input)
The column dimension of the array containing the left-singular vectors.
Default: u_col dim=min (m, n)

IMSL V, fcomplex **p v (Output)
The address of a pointer to an array of size n X n containing the right singular vectors of A. On return,
the necessary space is allocated by ims1 ¢ 1in svd gen. Typically, f complex *p v is declared,
and &p_ v is used as an argument.

IMSL V_USER, fcomplexv[] (Output)
The address of a pointer to an array of size n x n containing the right singular vectors of A. The right-
singular vectors can be returned using the storage locations of the array a. Note that the return of
the left and right-singular vectors cannot use the storage locations of a simultaneously.

IMSL V_COL DIM, intv_col dim (Input)
The column dimension of the array containing the right-singular vectors.
Default: v_col dim= n

IMSL INVERSE, f complex **p gen inva (Output)
The address of a pointer to an array of size n x m containing the generalized inverse of the matrix A.
On return, the necessary space is allocated by ims1 ¢ 1lin svd gen. Typically,
f.complex *p_gen_ invaisdeclared, and &p_gen inva is used as an argument.

IMSL INVERSE USER,fcomplex gen_inval[] (Output)
A user-allocated array of size n x m containing the general inverse of the matrix A.

IMSL INV COL DIM, intgen inva col dim (Input)
The column dimension of the array containing the general inverse of the matrix A.

Default: gen_inva col dim=m

Description

The functionims1l ¢ lin svd gen computes the singular value decomposition of a complex matrix A. It first
reduces the matrix A to a bidiagonal matrix B by pre- and post-multiplying Householder transformations. Then,
the singular value decomposition of B is computed using the implicit-shifted QR algorithm. An estimate of the

= Rogygmq\{q lin_svd_gen (complex) Chapter 1 Linear Systems

249

rank of the matrix A is obtained by finding the smallest integer k such that sy, < tol or sy < [tol|*||All«. Since

Siv1 1 < §j it follows that all the s;; satisfy the same inequality for i = k, .., min (m, n) — 1. The rank is set to the

value k — 1. If A= USV", its generalized inverse is A* = VS* U,

Here,

deiag<sI’11, ...,S_l 0, ...,0)

i, >
Only singular values that are not negligible are reciprocated. If IMSL INVERSE or IMSL INVERSE USERIsS
specified, the function first computes the singular value decomposition of the matrix A. The generalized inverse is
then computed. The function ims1 ¢ 1in svd gen fails if the QR algorithm does not converge after 30 iter-
ations isolating an individual singular value.

Examples

Example 1

This example computes the singular values of a 6 x 3 complex matrix.

#include <imsl.h>
int main ()
{
int m= 6, n= 3;
f complex *s;
f complex al] = {{1.0, 2.0}, {3.0, 2.0}, {1.0,-4.0},
{3.0,-2.0}, {2.0,-4.0}, {1.0, 3.0},
{4.0, 3.0}, {-2.0,1.0}, {1.0, 4.0},
{2.0,-1.0}, {3.0, 0.0}, {3.0,-1.0},
{1.0,-5.0}, {2.0,-5.0}, {2.0, 2.0},
{1.0, 2.0}, {4.0,-2.0}, {2.0,-3.0}1};
/* Compute singular values */
s = imsl ¢ lin svd gen (m, n, a, 0);
/* Print singular values */
imsl ¢ write matrix ("Singular values", 1, n, s, 0);

}

Output
Singular values
1 2 3
(11.77, 0.00) (9.30, 0.00) (4.99, 0.00)
Example 2

This example computes the singular value decomposition of the 6 x 3 complex matrix A. The singular values are
returned in the user-provided array. The matrices U and V are returned in the space provided by the function

imsl ¢ lin svd gen.

= R{ng?mq\{q lin_svd_gen (complex) Chapter 1 Linear Systems 250

#include <imsl.h>

int main ()
{
int m= 6, n= 3;
f complex s[3], *p u, *p v;
f complex al] = {{1.0, 2.0}, {3.0, 2.0}, {1.0,-4.0},
{3.0,-2.0}, {2.0,-4.0}, {1.0, 3.0},

{4.0, 3.0}, {-2.0,1.0}, {1.0, 4.0},
{2.0,-1.0}, {3.0, 0.0}, {3.0,-1.0},
{1.0,-5.0}, {2.0,-5.0}, {2.0, 2.0},
{1.0, 2.0}, {4.0,-2.0}, {2.0,-3.0}};

/* Compute SVD of a */
imsl ¢ lin svd gen (m, n, a,
IMSL RETURN USER, s,
IMSL U, &p u,
IMSL V, &p v,

0);
/* Print decomposition factors */
imsl ¢ write matrix ("Singular values, S", 1, n, s, 0);
imsl ¢ write matrix ("Left singular vectors, U", m, n, p_u, 0);

imsl ¢ write matrix ("Right singular vectors, V", n, n, p v, 0);

Output
Singular values, S
1 2 3
(11.77, 0.00) « 9.30, 0.00) (4.99, 0.00)
Left singular vectors, U
1 2 3
1 0.1968, 0.2186) (0.5011, 0.0217) (-0.2007, -0.1003)
2 (0.3443, -0.3542) (-0.2933, 0.0248) (0.1155, -0.2338)
3 (0.1457, 0.2307) (-0.5424, 0.1381) (-0.4361, -0.4407)
4 | 0.3016, -0.0844) (0.2157, 0.2659) (-0.0523, -0.0894)
5 (0.2283, -0.6008) (-0.1325, 0.1433) (0.3152, -0.0090)
6 (0.2876, -0.0350) (0.4377, -0.0400) (0.0458, -0.6205)

Right singular vectors, V
2 3

.2651, 0.0000) (-0.7014, 0.0000)
(0.3850, -0.0707) (0.5482, 0.0624)
(0.1724, 0.8642) (-0.0173, -0.4509)

1 0.6616, 0.0000
.7355, .0379
3 0.0507, -0.1317

N
o

(@]
—_ — —
—
|
o

= R{ng?mq\{q lin_svd_gen (complex) Chapter 1 Linear Systems 251

Example 3

This example computes the rank and generalized inverse of a 6 x 4 matrix A. The rank and the 4 x 6 generalized

inverse matrix A* are printed.

#include <imsl.h>
#include <stdio.h>

int main ()

{

int m =6, n =4, rank;
float tol;
f complex gen inv([24], *s;

f complex al] = {{1.0, 2.0}, {3.0, 2.0}, {1.0,-4.0}, {1.0,0.0
{3.0,-2.0}, {2.0,-4.0}, {1.0, 3.0}, {0.0,1
{4.0, 3.0}, {-2.0,1.0}, {1.0, 4.0}, {0.0,0.0},
{2.0,-1.0}, {3.0, 0.0}, {3.0,-1.0}, {2.0,1
{1.0,-5.0}, {2.0,-5.0}, {2.0, 2.0}, {1.0,3
{1.0, 2.0}, {4.0,-2.0}, {2.0,-3.0}, {1.4,1

/* Factor a */
tol = 1l.e-4;

s = imsl ¢ lin svd gen (m, n, a,
IMSL RANK, tol, &rank,
IMSL INVERSE USER, gen inv,
IMSL INV_COL DIM, m,
0);

/* Print rank and generalized inverse matrix */
printf ("Rank = %2d", rank);

imsl ¢ write matrix ("Singular values", 1, n, s,
0) 7
imsl ¢ write matrix ("Generalized inverse", n, m, gen inv,
IMSL A COL DIM, m,
0);
}
Output
Rank = 4
Singular values
1 2 3
(12.13, 0.00) (9.53, 0.00) (5.67, 0.00)
4

Generalized inverse
1 2 3
1 (0.0260, 0.01e64) (-0.0185, 0.0453) (0.0720, 0.0700)

= R{nggmq\{q lin_svd_gen (complex) Chapter 1 Linear Systems

252

2 (0.0061, O.
3 (-0.0019, -0.
4 (0.0380, O.
1 (-0.0220, -O.
2 (0.0959, 0.
3 (-0.0234, 0.
4 (0.2918, -O.

Warning Errors

IMSL SLOWCONVERGENT MATRIX

0280)
0572)
0298)

0428
0885
1033
0763

—_— — — — N

.0820,
L1174,
.0758,

.0003,
.0187,
.0769,
.0881,

.1156) (-0.0410, -0.
.0812) (0.0499, 0.
.2158) (0.0356, -0.

5
0709) (0.0254, 0.
0287) (-0.0218, -0.
0103) (0.0810, -0.
2070) (-0.1531, 0.

0242)
0463)
0557)

1050
1109
1074
0814

—_ — — — O

Convergence cannot be reached after 30 iterations.

=RogueWave

lin_svd_gen (complex) Chapter 1 Linear Systems

253

in_sol_nonnegdef

Solves a real symmetric nonnegative definite system of linear equations Ax = b. Using options, computes a Chole-

sky factorization of the matrix A, such that A = R'R = LLT. Computes the solution to Ax = b given the Cholesky

factor.

Synopsis
#include <ims1l.h>
float *imsl f lin sol nonnegdef (intn, floata[],floatb[], .., 0)

The type double functionis imsl d lin sol nonnegdef.

Required Arguments

intn (Input)
Number of rows and columns in the matrix.

floata[] (Input)
Array of size n x n containing the matrix.

floatb [1 (Input)
Array of size n containing the right-hand side.

Return Value

Using required arguments, ims1 f 1in sol nonnegdef returns a pointer to a solution x of the linear sys-

tem. To release this space, use ims1 free. If no value can be computed, NULL is returned.

Synopsis with Optional Arguments
#include <ims1.h>
float *ims1l f 1in sol nonnegdef (intn, floata[], floatb[1],
IMSL RETURN USER, float x[],
IMSL A COL DIM, inta col dim,
IMSL FACTOR, float **p factor,
IMSL FACTOR USER, float factor[],

IMSL FAC COL DIM, intfac col dim,

EE Rog':]?w”q\tes lin_sol_nonnegdef

Chapter 1 Linear Systems

254

IMSL_INVERSE, float **p_inva,
IMSL_INVERSE_USER, float inval[],
IMSL_INV_COL_DIM, intinv_col dim,
IMSL_TOLERANCE, float tol,
IMSL_FACTOR ONLY,
IMSL_SOLVE_ONLY,

IMSL_INVERSE_ ONLY,

0)

Optional Arguments

IMSL RETURN USER, float x[] (Output)
A user-allocated array of length n containing the solution x. When this option is specified, no storage
is allocated for the solution, and ims1 f 1in sol nonnegdef returns a pointer to the array x.

IMSL A COL DIM inta col dim (Input)
The column dimension of the array a.
Default:a_col dim=n

IMSL FACTOR, float **p factor (Output)

The address of a pointer to an array of size n x n containing the LL' factorization of A. When this
option is specified, the space for the factor matrix is allocated by ims1 f 1in sol nonnegdef.

The lower-triangular part of the factor array contains L, and the upper-triangular part contains L'R.
Typically, float *p factor is declared, and &p factor is used as an argument.

IMSL FACTOR USER, float factor[] (Input/Output)
A user-allocated array of size n x n containing the LLT factorization of A. The lower-triangular part of
factor contains L, and the upper-triangular part contains L. If a is not needed, a and factor can

be the same storage locations. If IMSL _SOLVE is specified, this parameter is input; otherwise, it is
output.

IMSL FAC COL DIM, int fac_col dim (Input)
The column dimension of the array containing the LLT factorization.
Default: fac _col dim=n

IMSL_INVERSE,f/oat **p inva (Output)
The address of a pointer to an array of size n x n containing the inverse of A. The space for this array
isallocated by ims1 f 1in sol nonnegdef. Typically, float *p inva is declared, and
&p_inva is used as an argument.

= R{ng?mq\{q lin_sol_nonnegdef Chapter 1 Linear Systems 255

IMSL INVERSE USER, float inva[] (Output)
A user-allocated array of size n x n containing the inverse of A. If a is not needed, a and factor can
be the same storage locations. The storage locations for A cannot be the factorization and the inverse
of A at the same time.

IMSL INV _COL DIM intinva col dim (Input)
The column dimension of the array containing the inverse of A.
Default: inva_col dim=n

IMSL TOLERANCE, float tol (Input)
Tolerance used in determining linear dependence. See the documentation for ~imsl1 f machine
(imsl f machine (float))in Chapter 12, “Utilities.
Default: tol =100* ims1l f machine (4)

IMSL_FACTOR ONLY

Compute the LL" factorization of A only. The argument b is ignored, and either the optional argument
IMSL FACTORoOr IMSL FACTOR_ USER s required.

IMSL SOLVE ONLY
Solve Ax = b using the factorization previously computed by this function. The argument a is ignored,
and the optional argument IMSL._ FACTOR_USER is required.

IMSL_INVERSE ONLY
Compute the inverse of A only. The argument b is ignored, and either the optional argument
IMSL INVERSE or IMSL INVERSE USER is required.

Description

The function ims1l f 1in sol nonnegdef solves a system of linear algebraic equations having a symmet-

ric nonnegative definite (positive semidefinite) coefficient matrix. It first computes a Cholesky (LL" or RTR)
factorization of the coefficient matrix A.

The factorization algorithm is based on the work of Healy (1968) and proceeds sequentially by columns. The i-th
column is declared to be linearly dependent on the first i — 1 columns if

i1
2
|aﬁ“:E:ﬁﬁ|§fﬂaﬁ
J=1
where € (specified in tol) may be set by the user. When a linear dependence is declared, all elements in the i-th
row of R (column of L) are set to zero.

Modifications due to Farebrother and Berry (1974) and Barrett and Healy (1978) for checking for matrices that are
not nonnegative definite also are incorporated. The function ims1 f 1lin sol nonnegdef declares Ato
not be nonnegative definite and issues an error message if either of the following conditions are satisfied:

= R{ng?mq\{q lin_sol_nonnegdef Chapter 1 Linear Systems 256

1~am‘ZEﬁfi—€WA

i—1
2. r;=0 and la,— Yrr,l>efaa,.k>i
=

Healy's (1968) algorithm and the function ims1 f 1in sol nonnegdef permitthe matrices Aand R to
occupy the same storage. Barrett and Healy (1978) in their remark neglect this fact. The function

ZH j
l/‘. .
=1

for a; in the above condition 2 to remedy this problem.

imsl f lin sol nonnegdef uses

If an inverse of the matrix A is required and the matrix is not (numerically) positive definite, then the resulting
inverse is a symmetric g, inverse of A. For a matrix G to be a g5 inverse of a matrix A, G must satisfy conditions 1
and 2 for the Moore-Penrose inverse, but generally fail conditions 3 and 4. The four conditions for G to be a
Moore-Penrose inverse of A are as follows:

1. AGA=A
2. GAG=G
3. AG s symmetric
4. GAis symmetric

The solution of the linear system Ax = b is computed by solving the factored version of the linear system R'Rx = b
as two successive triangular linear systems. In solving the triangular linear systems, if the elements of a row of R
are all zero, the corresponding element of the solution vector is set to zero. For a detailed description of the algo-
rithm, see Section 2 in Sallas and Lionti (1988).

Examples

Example 1

A solution to a system of four linear equations is obtained. Maindonald (1984, pp. 83-86 and 104-105) discusses
the computations for the factorization and solution to this problem.

#include <imsl.h>

int main ()

{

int n = 4;
float *x;
float all = {36.0, 12.0, 30.0, 6.0,

12.0, 20.0, 2.0, 10.0,
30.0, 2.0, 29.0, 1.0,

= R{ng?mq\{q lin_sol_nonnegdef Chapter 1 Linear Systems 257

6.0, 10.0, 1.0, 14.0};
float b[] = {18.0, 22.0, 7.0, 20.0};

/* Solve Ax = b for x */
x = imsl f lin sol nonnegdef (n, a, b, 0);

/* Print solution, x, of Ax
imsl f write matrix("Solution, x", 1, n, x, 0);

}

Output
Solution, x
1 2 3 4
0.167 0.500 0.000 1.000
Example 2

The symmetric nonnegative definite matrix in the initial example is used to compute the factorization only in the
firstcallto 1in sol nonnegdef. The space needed for the factor is provided by the user. On the second call,

both the LLT factorization and the right-hand side vector in the first example are used as the input to compute a

solution x. It also illustrates another way to obtain the solution array x.

#include <imsl.h>

int main ()

{

int n =14, a col dim = 6;
float factor[36], x[5];
float all = {36.0, 12.0, 30.0, 6.0,

12.0, 20.0, 2.0, 10.0,
30.0, 2.0, 29.0, 1.0,
6.0, 10.0, 1.0, 14.0};
float b[] = {18.0, 22.0, 7.0, 20.0};
/* Factor A */
imsl f lin sol nonnegdef (n, a, b,
IMSL FACTOR USER, factor,
IMSL FAC COL DIM, a col dim,
IMSL FACTOR ONLY,
0);
/* NULL is returned in */
/* this case. Another */
/* way to obtain the */
/* factor is to use the */
/* IMSL FACTOR option. */
imsl f write matrix("factor", n, n, factor,
IMSL A COL DIM, a col dim,
0);
/* Get the solution using */
/* the factorized matrix. */
imsl f lin sol nonnegdef (n, a, b,

= Db */

EE R{nggmq\{q lin_sol_nonnegdef

Chapter 1 Linear Systems

258

IMSL FACTOR USER, factor,
IMSL_FAC_COL DIM, a col dim,
IMSL RETURN USER, X,
IMSL_SOLVE ONLY,

0);
imsl f write matrix("Solution, x, of Ax = Db", 1, n, x, 0);
}
Output
Factor
1 2 3 4
1 6 2 5 1
2 2 4 -2 2
3 5 -2 0 0
4 1 2 0 3
Solution, x, of Ax = Db
1 2 3 4
0.167 0.500 0.000 1.000
Example 3

This example uses the IMSL INVERSE option to compute the symmetric g inverse of the symmetric nonnega-
tive matrix in the first example. Maindonald (1984, p. 106) discusses the computations for this problem.

#include <imsl.h>

int main ()

{

int n = 4;
float *p a inva, *p a inva a, *p_inva;
float al] =

{36.0, 12.0, 30.0, 6.0,
12.0, 20.0, 2.0, 10.0,
30.0, 2.0, 29.0, 1.0,
6.0, 10.0, 1.0, 14.0};

/* Get g2 inverse(a) */

imsl f lin sol nonnegdef (n, a, NULL,
IMSL INVERSE, &p_ inva,
IMSL_INVERSE ONLY,
0);

/* Form a*g2 inverse(a) */

p a inva = imsl f mat mul rect("A*B",
IMSL A MATRIX, n, n, a,
IMSL B MATRIX, n, n, p inva,

0);

= Rogypmq\{q lin_sol_nonnegdef Chapter 1 Linear Systems 259

/* Form a*g2 inverse(a)*a */

p_a inva a = imsl f mat mul rect ("A*B",
IMSL A MATRIX, n, n, p_a inva,
IMSL B MATRIX, n, n, a,

0) 7

imsl f write matrix("The g2 inverse of a", n, n, p_ inva,
0) 7
imsl f write matrix("a*g2 inverse(a)\nviolates condition 3 of"
" the M-P inverse", n, n, p a inva,
0);
imsl f write matrix("a = a*g2 inverse(a)*a\ncondition 1 of"
" the M-P inverse", n, n, p_a inva a,

0);
}
Output
The g2 inverse of a

1 2 3 4
1 0.0347 -0.0208 0.0000 0.0000
2 -0.0208 0.0903 0.0000 -0.0556
3 0.0000 0.0000 0.0000 0.0000
4 0.0000 -0.0556 0.0000 0.1111

a*g2 inverse (a)
violates condition 3 of the M-P inverse

1 2 3 4
1 1.0 -0.0 0.0 0.0
2 0.0 1.0 0.0 0.0
3 1.0 -0.5 0.0 0.0
4 0.0 -0.0 0.0 1.0
a = a*g2 inverse(a)*a
condition 1 of the M-P inverse
1 2 3 4
1 36 12 30 0
2 12 20 2 10
3 30 2 29 1
4 6 10 1 14

Warning Errors

IMSL INCONSISTENT EQUATIONS 2 Thelinear system of equations is inconsistent.

IMSL NOT NONNEG DEFINITE The matrix A is not nonnegative definite

= Rogypmq\{q lin_sol_nonnegdef Chapter 1 Linear Systems 260

—=— chapter 2 Eigensystem Analysis

Functions

Linear Eigensystem Problems

General Matrices

Eigenvalues and eigenvectors. eig_gen

Eigenvalues and eigenvectors. il eig_gen (complex)
Real Symmetric Matrices

Eigenvalues and eigenvectors. eig_sym
Complex Hermitian Matrices

Eigenvalues and eigenvectors. eig_herm (complex)

Generalized Eigensystem Problems
Real Symmetric Matrices and B Positive Definite

Eigenvalues and eigenvector. i eig_symgen
Real MatriCes . ..o geneig
Complex MatriCeso o geneig (complex)

265
269

273

277

281

285
290

= Rogygmq\f‘e; Chapter 2 Eigensystem Analysis

261

Usage Notes

An ordinary linear eigensystem problem is represented by the equation Ax = Ax where A denotes an n X n matrix.
The value A is an eigenvalue and x # 0 is the corresponding eigenvector. The eigenvector is determined up to a
scalar factor. In all functions, we have chosen this factor so that x has Euclidean length one, and the component
of x of largest magnitude is positive. The eigenvalues and corresponding eigenvectors are sorted then returned in
the order of largest to smallest complex magnitude. If x is a complex vector, this component of largest magnitude
is scaled to be real and positive. The entry where this component occurs can be arbitrary for eigenvectors having
nonunigue maximum magnitude values.

A generalized linear eigensystem problem is represented by Ax = ABx where A and B are n X n matrices. The value
A is a generalized eigenvalue, and x is the corresponding generalized eigenvector. The generalized eigenvectors
are normalized in the same manner as the ordinary eigensystem problem.

Error Analysis and Accuracy

The remarks in this section are for ordinary eigenvalue problems. Except in special cases, functions will not return
the exact eigenvalue-eigenvector pair for the ordinary eigenvalue problem Ax = Ax. Typically, the computed pair

X,
are an exact eigenvector-eigenvalue pair for a "nearby” matrix A + E. Information about £ is known only in terms of
bounds of the form [|Ell5 < f(n) I|All>€. The value of f(n) depends on the algorithm, but is typically a small frac-

tional power of n. The parameter & is the machine precision. By a theorem due to Bauer and Fike (see Golub and
Van Loan 1989, p. 342),
min|4 - 4] < k(X)IEIl, forall 2in o(A4)

where g(A) is the set of all eigenvalues of A (called the spectrum of A), X is the matrix of eigenvectors, || -5 is

Euclidean length, and k(X) is the condition number of X defined as k(X) = ||X||2||)(1 II5. If Ais a real symmetric or

complex Hermitian matrix, then its eigenvector matrix X is respectively orthogonal or unitary. For these matrices,
K(X)=1.

The accuracy of the computed eigenvalues

and eigenvectors

can be checked by computing their performance index T. The performance index is defined to be

= R{ng?mq\{q Usage Notes Chapter 2 Eigensystem Analysis 262

7 = max

i<izn nellAlL[%]1,

where € is again the machine precision.

The performance index T is related to the error analysis because

HE)NCjHQ = HA)NCj_ Njij”z
where E is the "nearby” matrix discussed above.

While the exact value of T is precision and data dependent, the performance of an eigensystem analysis function
is defined as excellentif T <1, good if T < T < 100, and poor if T> 100. This is an arbitrary definition, but large val-
ues of T can serve as a warning that there is a significant error in the calculation.

If the condition number k(X) of the eigenvector matrix X is large, there can be large errors in the eigenvalues even
if Tis small. In particular, it is often difficult to recognize near multiple eigenvalues or unstable mathematical prob-
lems from numerical results. This facet of the eigenvalue problem is often difficult for users to understand.
Suppose the accuracy of an individual eigenvalue is desired. This can be answered approximately by computing
the condition number of an individual eigenvalue (see Golub and Van Loan 1989, pp. 344 - 345). For matrices A,
such that the computed array of normalized eigenvectors X is invertible, the condition number of A; is

;= llei x|l

the Euclidean length of the j-th row of X'!. Users can choose to compute this matrix using function
imsl c lin sol genin Chapter 1, “Linear Systems.” An approximate bound for the accuracy of a computed
eigenvalue is then given by kiellAll. To compute an approximate bound for the relative accuracy of an eigenvalue,

divide this bound by |>\J|.

Reformulating Generalized Eigenvalue Problems

The eigenvalue problem Ax = ABx is often difficult for users to analyze because it is frequently ill-conditioned.
Occasionally, changes of variables can be performed on the given problem to ease this ill-conditioning. Suppose

that B is singular, but A is nonsingular. Define the reciprocal u = A-7. Then assuming A is definite, the roles of A
and B are interchanged so that the reformulated problem Bx = pAx is solved. Those generalized eigenvalues

H; = 0 correspond to eigenvalues A; = co. The remaining A, = uﬂ. The generalized eigenvectors for A; correspond
to those for M.

Now suppose that B is nonsingular. The user can solve the ordinary eigenvalue problem Cx = Ax where C = B™'A.

The matrix C is subject to perturbations due to ill-conditioning and rounding errors when computing B™'A. Com-
puting the condition numbers of the eigenvalues for C may, however, be helpful for analyzing the accuracy of
results for the generalized problem.

= R{ng?mq\{q Usage Notes Chapter 2 Eigensystem Analysis 263

There is another method that users can consider to reduce the generalized problem to an alternate ordinary
problem. This technique is based on first computing a matrix decomposition B = PQ where both P and Q are
matrices that are “simple” to invert. Then, the given generalized problem is equivalent to the ordinary eigenvalue

problem fy = Ay. The matrix F= P"'AQ" and the unnormalized eigenvectors of the generalized problem are given
by x = Q'y. An example of this reformulation is used in the case where A and B are real and symmetric, with B
positive definite. The function ims1 f eig symgen uses P =R'and Q = R where R is an upper-triangular matrix

obtained from a Cholesky decomposition, B = R'R. The matrix F = RTAR™" is symmetric and real. Computation of
the eigenvalue-eigenvector expansion for Fis based on function imsl f eig sym.

= R{ng?mq\{q Usage Notes Chapter 2 Eigensystem Analysis 264

eig_gen

more. ..

Computes the eigenexpansion of a real matrix A.

Synopsis
#include <ims1l.h>
f.complex *ims1 f eig gen (intn, float *a, .., 0)

The type d_complex functionis ims1 d eig gen.

Required Arguments

int n (Input)
Number of rows and columns in the matrix.

float *a (Input)
An array of size n X n containing the matrix.

Return Value

A pointer to the n complex eigenvalues of the matrix. To release this space, use ims1 free. If no value can be
computed, then NULL is returned.

Synopsis with Optional Arguments
#include <ims1.h>
fcomplex *ims1l f eig gen (intn, float *a,
IMSL VECTORS, f.complex **evec,
IMSL VECTORS USER, f.complex evecul],
IMSL RETURN USER, fcomplex evalul],
IMSL A COL DIM, inta col dim,

IMSL EVECU COL DIM, intevecu col dim,

= R‘Dgygmq\{eg eig_gen Chapter 2 Eigensystem Analysis 265

0)

Optional Arguments

IMSL VECTORS, f.complex **evec (Output)
The address of a pointer to an array of size n X n containing eigenvectors of the matrix. On return,
the necessary space is allocated by the function. Typically, f complex *evec is declared, and &evec
is used as an argument.

IMSL VECTORS USER, f complex evecu[] (Output)
Compute eigenvectors of the matrix. An array of size n X ncontaining the matrix of eigenvectors is
returned in the space evecu.

IMSL RETURN USER, fcomplex evalu[] (Output)
Store the neigenvalues in the space evalu.

IMSL A COL _DIM, inta col dim (Input)
The column dimension of a.
Default: a_col dim=n

IMSL EVECU COL DIV, intevecu col dim (Input)
The column dimension of evecu.

Default: evecu _col dim=n

Description

Function ims1 f eig gen computes the eigenvalues of a real matrix by a two-phase process. The matrix is
reduced to upper Hessenberg form by elementary orthogonal or Gauss similarity transformations. Then, eigen-
values are computed using a QR or combined LR-QR algorithm (Golub and Van Loan 1989, pp. 373 - 382, and
Watkins and Elsner 1990). The combined LR-QR algorithm is based on an implementation by Jeff Haag and David
Watkins. Eigenvectors are then calculated as required. When eigenvectors are computed, the QR algorithm is
used to compute the eigenexpansion. When only eigenvalues are required, the combined LR-QR algorithm is
used.

Examples

Example 1
#include <imsl.h>

int main ()

{
int n = 3;
float al] = {8.0, -1.0, -5.0,

-4.0, 4.0, -2.0,

= R{ng?mq\{q eig_gen Chapter 2 Eigensystem Analysis 266

18.

f complex *eval;

eval

imsl ¢ write matrix

}

Output

1
(2, 4)
Example 2

imsl f eig gen

("Eigenvalues",

0, -5.0, -7.0};

/* Compute eigenvalues of A */
0);

/* Print eigenvalues */

1, n, eval, 0);

(n, a,

Eigenvalues

2! _4) (

This example is a variation of the first example. Here, the eigenvectors are computed as well as the eigenvalues.

#include <imsl.h>

int main ()
{

int n = 3;

float all = {8.0, -1.0, -5.0,

-4.0, 4.0, -2.0,
18.0, -5.0, -7.0};
f complex *eval;
f complex *evec;
/* Compute eigenvalues of A */
eval = imsl f eig gen (n, a,
IMSL VECTORS, &evec,
0) 7
/* Print eigenvalues and eigenvectors */

imsl c write matrix ("Eigenvalues", 1, n, eval, 0);

imsl c write matrix ("Eigenvectors", n, n, evec, 0);
}
Output

Eigenvalues
1 2 3
(2, 4) 2, -4) (1, 0)
Eigenvectors
1 2 3
1 (0.3162, 0.3162) (0.3162, -0.3162) (0.4082, 0.0000)
2 (0.0000, 0.6325) (0.0000, -0.6325) (0.8165, 0.0000)
3 (0.6325, 0.0000) (0.6325, 0.0000) (0.4082, 0.0000)
= R{nggmq\{e: eig_gen Chapter 2 Eigensystem Analysis 267

Warning Errors

IMSL SLOW CONVERGENCE GEN The iteration for an eigenvalue did not converge
after # iterations.

= Rogygmg\{q eig_gen Chapter 2 Eigensystem Analysis 268

eig_gen (complex)

more. ..

Computes the eigenexpansion of a complex matrix A.

Synopsis
#include <ims1l.h>
fcomplex *imsl c eig gen (intn, f complex *a, ..., 0)

The type d_complex procedure is imsl z eig gen.

Required Arguments

intn (Input)
Number of rows and columns in the matrix.

f.complex *a (Input)
Array of size n Xn containing the matrix.

Return Value

A pointer to the n complex eigenvalues of the matrix. To release this space, use ims1 free. If no value can be
computed, then NULL is returned.

Synopsis with Optional Arguments
#include <ims1.h>
f.complex *ims1l c eig gen (intn, f complex *a
IMSL VECTORS, f.complex **evec,
IMSL VECTORS USER, f.complex evecul],
IMSL RETURN USER, fcomplex evalul],
IMSL A COL DIM, inta col dim,

IMSL EVECU COL DIM, intevecu col dim,

= R‘Dgygmq\{eg eig_gen (complex) Chapter 2 Eigensystem Analysis 269

0)

Optional Arguments

IMSL VECTORS, f.complex **evec (Output)
The address of a pointer to an array of size n Xn containing eigenvectors of the matrix. On return,
the necessary space is allocated by the function. Typically, f complex *evecu is declared, and
&evecu is used as an argument.

IMSL VECTORS USER, f complex evecu[] (Output)

Compute eigenvectors of the matrix. An array of size n X n containing the matrix of eigenvectors is
returned in the space evecu.

IMSL RETURN USER, f.complex evalu[] (Output)
Store the n eigenvalues in the space evalu.

IMSL A COL _DIM, inta col dim (Input)
The column dimension of A.
Default:a_col dim=n

IMSL_EVECU_COL_DIM intevecu col dim (Input)
The column dimension of evecu.

Default: evecu col dim=n

Description

The function ims1 c_eig gen computes the eigenvalues of a complex matrix by a two-phase process. The
matrix is reduced to upper Hessenberg form by elementary Gauss transformations. Then, the eigenvalues are
computed using an explicitly shifted LR algorithm. Eigenvectors are calculated during the iterations for the eigen-
values (Martin and Wilkinson 1971).

Examples

Example 1
#include <imsl.h>

int main ()

{
int n = 4;
f complex al] = { {5,9}, {5,5}, {-6,-6}, {-7,-7},
{313}/ {6110}1 {_51_5}1 {_61_6}1
{2/2}/ {3/3}/ {_lr 3}1 {_51_5}1
{1,113}, (2,2}, {-3,-3}, { O, 4} };

f complex *eval;

= Rogypmq\{q eig_gen (complex) Chapter 2 Eigensystem Analysis 270

/* Compute eigenvalues */
eval = imsl ¢ eig gen (n, a, 0);

/* Print eigenvalues */
imsl ¢ write matrix ("Eigenvalues", 1, n, eval, 0);

}

Output
Eigenvalues
1 2 3
(4, 8) (3, 7) | 2, 6)
4
(1, 5)
Example 2

This example is a variation of the first example. Here, the eigenvectors are computed as well as the eigenvalues.

#include <imsl.h>

int main ()
{
int n = 4;
f complex al]l = { {5,9}, {5,5}, {-6,-6}, {=7,-7},
{313}1 {6110}1 {_51_5}1 {_61_6}1
{212}1 {313}/ {_ll 3}1 {_51_5}1
{111}1 {212}1 {_31_3}1 { OI 4} };
f complex *eval;
f complex *evec;
/* Compute eigenvalues and eigenvectors */

eval = imsl ¢ eig gen (n, a,
IMSL VECTORS, s&evec,
0);
/* Print eigenvalues and eigenvectors */
imsl ¢ write matrix ("Eigenvalues", 1, n, eval, 0);
imsl ¢ write matrix ("Eigenvectors", n, n, evec, 0);
}
Output
Eigenvalues
1 2 3
(4, 8) (3, 7) | 2, 6)
4
(1, 5)
Eigenvectors
1 2 3
1 (0.5773, -0.0000) (0.5774 0.0000) (0.3780, -0.0000)

= R{nggmq\{q eig_gen (complex) Chapter 2 Eigensystem Analysis 271

2 (0.5773, -0.0000)
3 (0.5774, 0.0000)
4 (-0.0000, -0.0000)
4
1 0.7559, 0.0000)
2 | 0.3780, 0.0000)
3 (0.3780, 0.0000)
4 | 0.3780, 0.0000)

Fatal Errors

IMSL SLOW CONVERGENCE GEN

(0.5773, -0.0000) (0.7559,
(-0.0000, -0.0000) (0.3780,
(0.5774, 0.0000) (0.3780,

iterations.

0.0000)
0.0000)
-0.0000)

The iteration for an eigenvalue did not converge after

=RogueWave

eig_gen (complex)

Chapter 2 Eigensystem Analysis

272

eig_sym

more. ..

Computes the eigenexpansion of a real symmetric matrix A.

Synopsis
#include <imsl.h>
float *imsl f eig sym(intn, float *a, ..., 0)

The type double procedure is ims1 d eig sym.

Required Arguments

intn (Input)
Number of rows and columns in the matrix.

float *a (Input)
Array of size n X n containing the symmetric matrix.

Return Value

A pointer to the n eigenvalues of the symmetric matrix. To release this space, use ims1 free. If no value can be
computed, then NULL is returned.

Synopsis with Optional Arguments
#include <ims1.h>
float *imsl f eig sym(intn, float *a,
IMSL VECTORS, float **evec,
IMSL VECTORS USER, floatevecul],
IMSL_RETURN_ USER, float evalul]l,
IMSL RANGE, float elow, float ehigh,

IMSL A COL DIM, inta col dim,

= R‘Dgygmq\{eg eig_sym Chapter 2 Eigensystem Analysis 273

IMSL EVECU COL DIV, intevecu col dim,
IMSL RETURN NUMBER,int *n_eval,

0)

Optional Arguments

IMSL VECTORS, float **evec (Output)
The address of a pointer to an array of size n X n containing the eigenvectors of the matrix. On
return, the necessary space is allocated by the function. Typically, float *evec is declared, and

&evec is used as an argument.

IMSL VECTORS USER, floatevecu[] (Output)
Compute eigenvectors of the matrix. An array of size n X n containing the orthogonal matrix of
eigenvectors is returned in the space evecu.

IMSL RETURN USER, floatevalu[] (Output)
Store the n eigenvalues in the space evalu.

IMSL RANGE, float elow, float ehigh (Input)
Return eigenvalues and optionally eigenvectors that lie in the interval with lower limit e low and
upper limit ehigh.
Default: (e1low, ehigh) = (—o0, +00)

IMSL A COL DIM, inta col dim (Input)
The column dimension of a.
Defaultta_col dim=n

IMSL EVECU COL DIV, intevecu col dim (Input)
The column dimension of evecu.

Default: evecu col dim=n

IMSL RETURN NUMBER,int *n_eval (Output)
The number of output eigenvalues and eigenvectors in the range elow, ehigh.

Description

The function ims1 f eig sym computes the eigenvalues of a symmetric real matrix by a two-phase process.
The matrix is reduced to tridiagonal form by elementary orthogonal similarity transformations. Then, the eigenval-
ues are computed using a rational QR or bisection algorithm. Eigenvectors are calculated as required (Parlett
1980, pp. 169 - 173).

= R{nggmq\{q eig_sym Chapter 2 Eigensystem Analysis 274

Examples

Example 1
#include <imsl.h>

int main ()

{

int n = 3;
float all = f{7.0, -8.0, -8.0,
-8.0, -16.0, -18.0,
-8.0, -18.0, 13.0};
float *eval;
/* Compute eigenvalues */
eval = imsl f eig sym(n, a, 0);
/* Print eigenvalues */

imsl f write matrix

}

Output
Eigenvalues
1 2
-27.90 22.68
Example 2

This example is a variation of the first example. Here, the eigenvectors are computed as well as the eigenvalues.

#include <imsl.h>

int main ()

{

("Eigenvalues", 1, 3,

eval, 0);

9.22

int n = 3;
float aly] = {7.0, -8.0, -8.0,

-8.0, -16.0, -18.0,

-8.0, -18.0, 13.0};
float *eval;
float *evec;

/* Compute eigenvalues and eigenvectors */

eval = imsl f eig sym(n, a,

IMSL_VECTORS,

sevec,

0);

/* Print eigenvalues and eigenvectors */

imsl f write matrix ("Eigenvalues", 1, n, eval, 0);
imsl f write matrix ("Eigenvectors", n, n, evec, 0);
}
= R{ng?mq\{q eig_sym Chapter 2 Eigensystem Analysis 275

Output

Eigenvalues
1 2 3
-27.90 22.68 9.22
Eigenvectors
1 2 3
1 0.2945 -0.2722 0.9161
2 0.8521 -0.3591 -0.3806
3 0.4326 0.8927 0.1262

Warning Errors

IMSL SLOW CONVERGENCE SYM The iteration for the eigenvalue failed to converge in
100 iterations before deflating

IMSL SLOW CONVERGENCE 2 Inverse iteration did not converge. Eigenvector is not
correct for the specified eigenvalue.

IMSL LOST ORTHOGONALITY 2 The eigenvectors have lost orthogonality.

IMSL NO EIGENVALUES RETURNED The number of eigenvalues in the specified interval

exceeds mxeval. The argument n_eval contains the
number of eigenvalues in the interval. No eigenvalues
will be returned.

= R{ng?mq\{q eig_sym Chapter 2 Eigensystem Analysis 276

eig_herm (complex)

more. ..

Computes the eigenexpansion of a complex Hermitian matrix A.

Synopsis
#include <imsl.h>
float *imsl c eig herm(intn, f complex *a, ..., 0)

The type double procedure is ims1 d eig herm.

Required Arguments

intn (Input)
Number of rows and columns in the matrix.

f.complex *a (Input)
Array of size n X n containing the matrix.

Return Value

A pointer to the n eigenvalues of the matrix. To release this space, use ims1 free. If no value can be com-
puted, then NULL is returned.

Synopsis with Optional Arguments
#include <imsl.h>
float *imsl c eig herm(int n, f complex *a,
IMSL VECTORS, f.complex **evec,
IMSL VECTORS USER, f.complex evecul],
IMSL RETURN USER, floatevalul[],
IMSL RANGE, float elow, float ehigh,

IMSL A COL DIM, inta col dim,

= Rogygmg\{q eig_herm (complex) Chapter 2 Eigensystem Analysis 277

IMSL EVECU COL DIV, intevecu col dim,
IMSL RETURN NUMBER,int *n_eval,

0)

Optional Arguments

IMSL VECTORS, f.complex **evec (Output)
The address of a pointer to an array of size n X n containing eigenvectors of the matrix. On return,
the necessary space is allocated by the function. Typically, f complex *evec is declared, and &evec
is used as an argument.

IMSL VECTORS USER, f complex evecu[] (Output)
Compute eigenvectors of the matrix. An array of size n X n containing the unitary matrix of eigenvec-

tors is returned in the space evecu.

IMSL RETURN USER, floatevalul] (Output)
Store the n eigenvalues in the space evalu.

IMSL RANGE, float elow, float ehigh (Input)
Return eigenvalues and optionally eigenvectors that lie in the interval with lower limit elow and
upper limit ehigh.
Default: (elow, ehigh) = (— o0, +00).

IMSL A COL _DIM, inta col dim (Input)
The column dimension of A.
Default:a_col dim=n

IMSL_EVECU_COL_DIM intevecu col dim (Input)
The column dimension of X.

Default: evecu col dim=n

IMSL RETURN NUMBER,int *n_eval (Output)
The number of output eigenvalues and eigenvectors in the range elow, ehigh.

Description

The function ims1 ¢ eig herm computes the eigenvalues of a complex Hermitian matrix by a two-phase
process. The matrix is reduced to tridiagonal form by elementary orthogonal similarity transformations. Then, the
eigenvalues are computed using a rational QR or bisection algorithm. Eigenvectors are calculated as required.

= R{ng?mq\{q eig_herm (complex) Chapter 2 Eigensystem Analysis 278

Examples

Example 1
#include <imsl.h>
int main ()

{

int n = 3;
f complex al[] =

float *eval;

{ {1,0},

{11_7}/ {Ol_l}l
{5,0}, {10,-3},
{10,3}, {-2,0} };

eval = imsl ¢ eig herm(n, a,

/* Compute eigenvalues */

/* Print eigenvalues */

imsl f write matrix

}

Output
Eigenvalues
1 2
15.38 -10.63
Example 2

This example is a variation of the first example. Here, the eigenvectors are computed as well as the eigenvalues.

#include <imsl.h>

int main ()

{
int n = 3;
f complex afl] =

float *eval;
f complex *evec;

{ {1,0},

("Eigenvalues", 1, n, eval, 0);

-0.75

{11_7}1 {Ol_l}l
{5,0}, {10,-3},
{10,3}, {-2,0} };

/* Compute eigenvalues and eigenvectors */

eval = imsl ¢ eig herm(n, a,

imsl f write matrix
imsl c write matrix

IMSL VECTORS, &evec,

/* Print eigenvalues and eigenvectors */

("Eigenvalues", 1, n, eval, 0);
("Eigenvectors", n, n, evec, 0);

=RogueWave

eig_herm (complex)

Chapter 2 Eigensystem Analysis

279

Output

Eigenvalues
1 2 3
15.38 -10.63 -0.75

Eigenvectors

—_~ - - W

1 2
1 (0.0631, -0.4075) (-0.0598, -0.3117) (0.8539, 0.0000
2 (0.7703, 0.0000) (-0.5939, 0.1841) (-0.0313, -0.1380
3 (0.4668, 0.1366) (0.7160, 0.0000) (0.0808, -0.4942

Warning Errors

IMSL LOST ORTHOGONALITY The iteration for at least one eigenvector failed to con-
verge. Some of the eigenvectors may be inaccurate.

IMSL NEVAL MXEVAL MISMATCH The determined number of eigenvalues in the interval
(#, #) is #. However, the input value for the maximum
number of eigenvalues in this interval is #.

Fatal Errors

IMSL SLOW CONVERGENCE GEN The iteration for the eigenvalues did not converge.

IMSL HERMITIAN DIAG REAL The matrix element A (#, #) = #. The diagonal of a Her-
mitian matrix must be real.

= R{ng?mq\{q eig_herm (complex) Chapter 2 Eigensystem Analysis 280

eig_symgen

more. ..

Computes the generalized eigenexpansion of a system Ax = ABx. The matrices A and B are real and symmetric,

and B is positive definite.

Synopsis
#include <imsl.h>
float *ims1l f eig symgen (intn, float *a, float *b, ..., 0)

The type double procedure is imsl d eig symgen.

Required Arguments

int n (Input)
Number of rows and columns in the matrices.

float *a (Input)
Array of size n xXn containing the symmetric coefficient matrix A.

float *b (Input)

Array of size n xn containing the positive definite symmetric coefficient matrix B.

Return Value

A pointer to the n eigenvalues of the symmetric matrix. To release this space, use ims1 free. If novalue can

be computed, then NULL is returned.

Synopsis with Optional Arguments
#include <imsl.h>
float *ims1l f eig symgen (int n, float *a, float *b,
IMSL VECTORS, float **evec,
IMSL VECTORS USER, floatevecul],

IMSL RETURN USER, floatevalul],

=RogueWave eig_symgen

Chapter 2 Eigensystem Analysis

281

IMSL A COL DIM, inta col dim,
IMSL B COL DIM, intb col dim,
IMSL EVECU COL DIV, intevecu col dim,

0)

Optional Arguments

IMSL VECTORS, float **evec (Output)
The address of a pointer to an array of size n Xn containing eigenvectors of the problem. On return,
the necessary space is allocated by the function. Typically, float *evec is declared, and &evec is
used as an argument.

IMSL VECTORS USER, floatevecul[] (Output)
Compute eigenvectors of the matrix. An array of size n Xn containing the matrix of generalized

eigenvectors is returned in the space evecu.

IMSL RETURN USER, floatevalul] (Output)
Store the n eigenvalues in the space evalu.

IMSL A COL _DIM, inta col dim (Input)
The column dimension of A.
Default: a_col dim=n

IMSL B COL_DIM, intb_col dim (Input)
The column dimension of B.
Defaultt b_col dim=n

IMSL EVECU COL DIM, intevecu col dim (Input)
The column dimension of evecu.

Default: evecu _col dim=n

Description

The function ims1 f eig symgen computes the eigenvalues of a symmetric, positive definite eigenvalue
problem by a three-phase process (Martin and Wilkinson 1971). The matrix B is reduced to factored form using
the Cholesky decomposition. These factors are used to form a congruence transformation that yields a symmet-
ric real matrix whose eigenexpansion is obtained. The problem is then transformed back to the original
coordinates. Eigenvectors are calculated and transformed as required.

= R{ng?mq\{q eig_symgen Chapter 2 Eigensystem Analysis 282

Examples

Example 1
#include <imsl.h>

int main ()

{

int n = 3;
float al] = {1.1, 1.2, 1.4,
1.2, 1.3, 1.5,
1.4, 1.5, 1.6};
float b{] = {2.0, 1.0, 0.0,
1.0, 2.0, 1.0,
0.0, 1.0, 2.0};
float *eval;
/* Solve for eigenvalues */
eval = imsl f eig symgen (n, a, b, 0);
/* Print eigenvalues */
imsl f write matrix ("Eigenvalues", 1, n, eval, 0);
}
Output
Eigenvalues
1 2 3
1.386 -0.058 -0.003
Example 2

This example is a variation of the first example. Here, the eigenvectors are computed as well as the eigenvalues.

#include <imsl.h>

int main ()

{

int n = 3;
float al] = {1.1, 1.2, 1.4,
1.2, 1.3, 1.5,
1.4, 1.5, 1.6};
float b[] = {2.0, 1.0, 0.0,
1.0, 2.0, 1.0,
0.0, 1.0, 2.0};
float *eval;
float *evec;
/* Solve for eigenvalues and eigenvectors */
eval = imsl f eig symgen (n, a, b,
IMSL VECTORS, &evec,
0);

/* Print eigenvalues and eigenvectors */

= ROQEJ?WH\{E: eig_symgen Chapter 2 Eigensystem Analysis

283

imsl f write matrix ("Eigenvalues", 1, n, eval, 0);
imsl f write matrix ("Eigenvectors", n, n, evec, 0);

}

Output
Eigenvalues
1 2 3
1.386 -0.058 -0.003
Eigenvectors
1 2 3
1 0.6431 -0.1147 -0.6817
2 -0.0224 -0.6872 0.7266
3 0.7655 0.7174 -0.0858

Warning Errors

IMSL SLOW CONVERGENCE SYM The iteration for an eigenvalue failed to converge
in 100 iterations before deflating.

Fatal Errors

IMSL SUBMATRIX NOT POS DEFINITE The leading # by # submatrix of the input matrix
is not positive definite.

IMSL MATRIX B NOT POS DEFINITE Matrix B is not positive definite.

= R{ng?mg\{q eig_symgen Chapter 2 Eigensystem Analysis 284

geneig

more. ..

Computes the generalized eigenexpansion of a system Ax = ABx, with A and B real.

Synopsis
#include <ims1l.h>
void ims1 f geneig (intn, float *a, float *b, f complex *alpha, float *beta, ..., 0)

The double analogue is ims1 d geneig.

Required Arguments

intn (Input)
Number of rows and columns in A and B.

float *a (Input)
Array of size n X n containing the coefficient matrix A.

float *b (Input)
Array of size n X n containing the coefficient matrix B.

f.complex *alpha (Output)
Vector of size n containing scalars ;. If B; = 0, A\j = a/B; fori=0, ..., n — 1 are the eigenvalues of the
system.

float *beta (Output)
Vector of sizen .

Synopsis with Optional Arguments
#include <imsl.h>
void imsl f geneig (intn, float *a, float *b,
IMSL VECTORS, f.complex **evec,
IMSL VECTORS USER, f.complex evecul],

IMSL A COL DIM, inta col dim,

= Rogyngq\(e: geneig Chapter 2 Eigensystem Analysis

285

IMSL B COL DIM, intb col dim,
IMSL EVECU COL DIV, intevecu col dim,

0)

Optional Arguments

IMSL VECTORS, f.complex **evec (Output)
The address of a pointer to an array of size n X n containing eigenvectors of the problem. Each vec-
tor is normalized to have Euclidean length equal to the value one. On return, the necessary space is
allocated by the function. Typically, f complex *evec is declared, and &evec is used as an

argument.

IMSL VECTORS USER,f complex evecul[] (Output)
Compute eigenvectors of the matrix. An array of size n X n containing the matrix of generalized
eigenvectors is returned in the space evecu. Each vector is normalized to have Euclidean length
equal to the value one.

IMSL A COL DIM, inta col dim (Input)
The column dimension of A.
Defaultta_col dim=n

IMSL B COL DIM, intb col dim (Input)
The column dimension of B.
Default: b col dim=n.

IMSL EVECU COL DIM intevecu col dim (Input)
The column dimension of evecu.

Default: evecu col dim=n

Description

The function ims1 f geneig uses the QZ algorithm to compute the eigenvalues and eigenvectors of the gen-
eralized eigensystem Ax = ABx, where A and B are real matrices of order n. The eigenvalues for this problem can
be infinite, so & and B are returned instead of A. If B is nonzero, A = o/P.

The first step of the QZ algorithm is to simultaneously reduce A to upper-Hessenberg form and B to upper-trian-
gular form. Then, orthogonal transformations are used to reduce A to quasi-upper-triangular form while keeping
B upper triangular. The generalized eigenvalues and eigenvectors for the reduced problem are then computed.

The function ims1 f geneigis based on the QZ algorithm due to Moler and Stewart (1973), as implemented
by the EISPACK routines QZHES, QZIT and QZVAL; see Garbow et al. (1977).

= R{ng?mq\{q geneig Chapter 2 Eigensystem Analysis 286

Examples

Example 1

In this example, the eigenvalue, A, of system Ax = ABx is computed, where

1.0 05 0.0 0.5 0.0 0.0
A=1[-10.0 2.0 0.0 and B= (3.0 3.0 0.0
50 1.0 05 40 05 1.0

= R‘Dgygmq\{eg geneig Chapter 2 Eigensystem Analysis 287

#include <imsl.h>
#include <stdio.h>

int main ()

{

int n = 3;

f complex alphal3];
float beta[3];
int i;

f complex evall[3];
float al] =
{1.0, 0.5, 0.0,
-10.0, 2.0, 0.0,
5.0, 1.0, 0.5%};
float =
{

[

]
Ol
OI
5

4

b
0.5, 0 ’
3.0, 3
4.0, O

14

R O O

. .0

. .0,

. .0}

/* Compute eigenvalues */

imsl f geneig (n, a, b, alpha, beta,
0);

for (i=0; i<n; 1i++)

if (betali] != 0.0)
eval[i] = imsl c div(alphali]
imsl cf convert(beta[i], 0.0));
else
printf ("Infinite eigenvalue\n");

/* Print eigenvalues */

imsl ¢ write matrix ("Eigenvalues", 1, n, eval,

0);
}
Output

Eigenvalues
1 2 3

(0.833, 1.993) (0.833, -1.993) (0.500, 0.000)
Example 2

This example finds the eigenvalues and eigenvectors of the same eigensystem given in the last example.

#include <imsl.h>
#include <stdio.h>

= Rogypmq\{q geneig Chapter 2 Eigensystem Analysis 288

int main ()

{
int
f complex
float
int
f complex
f complex

float
{1.0,
-10.0,
5.0,

float
{

S w O
O O Ul
~

14

imsl f geneig
IMSL_VECTORS,

0);

(1=0;
if

for

else

printf

(betali]
eval[i] =
imsl cf convert (betali],

n = 3;
alphal3];
betal[3];
i;
evall[3];
*evec;

all

0.5,
2.0,

1.0,

0.0,
0.0,
0.5};

oo O
~ =~
o oo
o O O —
o= ~

~

O w o

a, b,
sevec,

(n, alpha, beta,

i++)

'= 0.0)
imsl c div(alphali]
0.0));

i<n;

/* Print eigenvalues */

("Infinite eigenvalue\n");

imsl c write matrix ("Eigenvalues", 1, n, eval,
0);
/* Print eigenvectors */
imsl ¢ write matrix ("Eigenvectors", n, n, evec,
0) 7
}
Output
Eigenvalues
1 2 3
(0.833, 1.993) (0.833, -1.993) (0.500, -0.000)
Eigenvectors
1 2 3
1 < -0.197, 0.150) ¢ -0.197, -0.150) (-=0.000, 0.000)
2 | -0.069, -0.568) (-0.069, 0.568) (-0.000, 0.000)
3 0.782, 0.000) ¢ 0.782, 0.000) ¢ 1.000, 0.000)
EE R{ng?mq\{q geneig Chapter 2 Eigensystem Analysis 289

geneig (complex)

more. ..

Computes the generalized eigenexpansion of a system Ax = ABx, with A and B complex.

Synopsis
#include <ims1l.h>
void ims1l c geneig (intn, f.complex *a, f complex *b, f complex *alpha, float *beta, .., 0)

The double analogue is ims1 z geneig.

Required Arguments

intn (Input)
Number of rows and columns in A and B.

f.complex *a (Input)
Array of size n X n containing the coefficient matrix A.

f.complex *b (Input)
Array of size n X n containing the coefficient matrix B.

f.complex *alpha (Output)
Vector of size n containing scalars &;. If B; # 0, \; = /B fori =0, ..., n — 1 are the eigenvalues of the
system.

f.complex *beta (Output)
Vector of sizen .

Synopsis with Optional Arguments
#include <ims1.h>
void imsl c geneig (intn,fcomplex *a, f complex *b, f complex *alpha, f complex *beta,
IMSL VECTORS, f.complex **evec,
IMSL VECTORS USER, fcomplex evecul],

IMSL A COL DIM, inta col dim,

= R{ng?mq\{q geneig (complex) Chapter 2 Eigensystem Analysis 290

IMSL B COL DIM, intb col dim,
IMSL EVECU COL DIV, intevecu col dim,

0)

Optional Arguments

IMSL VECTORS, f.complex **evec (Output)
The address of a pointer to an array of size n X n containing eigenvectors of the problem. Each vec-
tor is normalized to have Euclidean length equal to the value one. On return, the necessary space is

allocated by the function. Typically, f complex *evec is declared, and &evec is used as an
argument.

IMSL VECTORS USER,f complex evecul[] (Output)
Compute eigenvectors of the matrix. An array of size n X n containing the matrix of generalized

eigenvectors is returned in the space evecu. Each vector is normalized to have Euclidean length
equal to the value one.

IMSL A COL DIM, inta col dim (Input)
The column dimension of A.
Defaultta_col dim=n

IMSL B COL DIM, intb col dim (Input)
The column dimension of B.
Default: b col dim =n.

IMSL EVECU COL DIM intevecu col dim (Input)
The column dimension of evecu.

Default: evecu_col dim=n.

Description

The function ims1 ¢ _geneig uses the QZ algorithm to compute the eigenvalues and eigenvectors of the gen-
eralized eigensystem Ax = ABx, where A and B are complex matrices of order n. The eigenvalues for this problem
can be infinite, so o and B are returned instead of A. If B is nonzero, A = o/P.

The first step of the QZ algorithm is to simultaneously reduce A to upper-Hessenberg form and B to upper-trian-
gular form. Then, orthogonal transformations are used to reduce A to quasi-upper-triangular form while keeping
B upper triangular. The generalized eigenvalues and eigenvectors for the reduced problem are then computed.

The function ims1 c geneigis based on the QZ algorithm due to Moler and Stewart (1973).

= R{ng?mq\{q geneig (complex) Chapter 2 Eigensystem Analysis 291

Examples

Example 1

In this example, the eigenvalue, A, of system Ax = ABx is solved, where

1 05+i 5i 0.5 0 0
A=|-10 2+i 0 and B=|3+3i 3+3i i
S5+i 1 0.5+3i 4+2i 05+i 1+i

#include <imsl.h>
#include <stdio.h>

int main ()
{
int n =3, i;
f complex alpha[3], betal3], evall[3];
f complex zero = {0.0, 0.0};
f complex a[] = {{1.0, 0.0}, {0.5, 1.0}, {0.0, 5.0},
{-10.0, 0.0}, {2.0, 1.0}, {0.0, 0.0},
{5.0, 1.0}, {1.0, 0.0}, {0.5, 3.0}1};
f complex b[] = {{0.5, 0.0}, {0.0, 0.0}, {0.0, 0.0},
{3.0, 3.0}, {3.0, 3.0}, {0.0, 1.0},
{4.0, 2.0}, {0.5, 1.0}, {1.0, 1.0}};

/* Compute eigenvalues */
imsl ¢ geneig (n, a, b, alpha, beta,

0);

for (i=0; i<n; 1i++)

if (!imsl c eqg(betal[i], zero))

eval[i] = imsl c div(alphal[i], betal[i]);
else

printf ("Infinite eigenvalue\n");

/* Print eigenvalues */
imsl ¢ write matrix ("Eigenvalues", 1, n, eval,
0);
}

Output
Eigenvalues

1 2 3
(-8.18, -25.38) | 2.18, 0.61) (0.12, -0.39)

= ROQ}J?WH\{E: geneig (complex) Chapter 2 Eigensystem Analysis 292

Example 2

This example finds the eigenvalues and eigenvectors of the same eigensystem given in the last example.

#include <imsl.h>
#include <stdio.h>

int main ()

{

int n =3, 1i;
f complex alpha[3], betal3], eval[3], *evec;
f complex zero = {0.0, 0.0};
f complex al[] = {{1.0, 0.0}, {0.5, 1.0}, {0.0, 5.0},
{-10.0, 0.0}, {2.0, 1.0}, {0.0, 0.0},
{5.0, 1.0}, {1.0, 0.0}, {0.5, 3.0}};
f complex b[] = {{0.5, 0.0}, {0.0, 0.0}, {0.0, 0.0},
{3.0, 3.0}, {3.0, 3.0}, {0.0, 1.0},
{4.0, 2.0}, {0.5, 1.0}, {1.0, 1.0}};
/* Compute eigenvalues and eigenvectors */
imsl ¢ geneig (n, a, b, alpha, beta,
IMSL VECTORS, & evec,
0);
for (i=0; i<n; 1i++)
if (!imsl c eqg(betali], zero))
eval[i] = imsl c div(alpha[i], betali]);
else
printf ("Infinite eigenvalue\n");
/* Print eigenvalues */
imsl ¢ write matrix ("Eigenvalues", 1, n, eval,
0);
/*Print eigenvectors */
imsl ¢ write matrix ("Eigenvectors", n, n, evec,
0);
}
Output
Eigenvalues
1 2 3
(-8.18, -25.38) (2.18, 0.61) (0.12, -0.39)
Eigenvectors
1 2 3
1 (-0.32067, -0.1245) (-=-0.3007, -0.2444) (0.0371, 0.1518)
2 0.1767, 0.0054) (0.8959, 0.0000) ¢ 0.9577, 0.0000)
3 (0.9201, 0.0000) (-0.2019, 0.0801) (-0.2215, 0.0968)

=RogueWave

geneig (complex)

Chapter 2 Eigensystem Analysis 293

% Rogygmqv.‘e" geneig (complex) Chapter 2 Eigensystem Analysis 294

=== chapter 3 INterpolation and
—= Approximation

Functions

Cubic Spline Interpolation

Derivative end conditions cub_spline_interp_e_cnd 306
Shape preserving cub_spline_interp_shape 315
Tension-Continuity-Bias Conditions cub_spline_tcb 321

Cubic Spline Evaluation and Integration
Evaluation and differentiation. cub_spline_value 329
INEEGration cub_spline_integral 333

Spline Interpolation

One-dimensional interpolation. L. spline_interp 335
Knot sequence given interpolationdata........................... spline_knots 341
Two-dimensional, tensor-product interpolation spline_2d_interp 346

Spline Evaluation and Integration

One-dimensional evaluation and differentiation.................... spline_value 353
One-dimensional integration spline_integral 357
Two-dimensional evaluation and differentiation................. spline_2d_value 360
Two-dimensional integration. spline_2d_integral 365

Multi-dimensional
Multidimensional interpolation and differentiation spline_nd_interp 368

Least-Squares Approximation and Smoothing

General funNCtions user_fcn_least_squares 373
Splines with fixed knots ... spline_least_squares 382
Tensor-product splines with fixed knots................ spline_2d_least_squares 389
Cubic smoothingspline cub_spline_smooth 395
Splines with constraints spline_Isq_constrained 400
Smooth one-dimensional data by error detection smooth_1d_data 409

= R‘Dgygmq\{eg Chapter 3 Interpolation and Approximation 295

Scattered Data Interpolation

Akima's surface-fittingmethod scattered_2d_interp 414
Scattered Data Least Squares

Fit using radial-basis functions radial_scattered_fit 419

Evaluate radial-basis fit. o radial_evaluate 427

= Rogygmg\{q Chapter 3 Interpolation and Approximation 296

Usage Notes

The majority of the functions in this chapter produce cubic piecewise polynomial or general spline functions that
either interpolate or approximate given data or support the evaluation and integration of these functions. Two
major subdivisions of functions are provided. The cubic spline functions begin with the prefix “cub spline "
and use the piecewise polynomial representation described below. The spline functions begin with the prefix
“spline "and use the B-spline representation described below. Most of the spline functions are based on rou-
tines in the book by de Boor (1978).

We provide a few general purpose routines for general least-squares fit to data and a routine that produces an
interpolant to two-dimensional scattered data.

Piecewise Polynomials

A univariate piecewise polynomial (function) p is specified by giving its breakpoint sequence E€R , the order k
(degree k — 1) of its polynomial pieces, and the k x (n - 1) matrix c of its local polynomial coefficients. In terms of
this information, the piecewise polynomial (ppoly) function is given by

i—1

p() Zjl 1)' fOI'é: x<§l+1

The breakpoint sequence € is assumed to be strictly increasing, and we extend the ppoly function to the entire
real axis by extrapolation from the first and last intervals. This representation is redundant when the ppoly func-
tion is known to be smooth. For example, if p is known to be continuous, then we can compute ¢4 1 from the ¢;;

as follows:

£ (Gag)

Cl, i+l :P(fiﬂ) = chifl,
ot ()

For smooth ppoly, we prefer to use the nonredundant representation in terms of the “basis” or B-splines, at least
when such a function is first to be determined.

Splines and B-Splines

B-splines provide a particularly convenient and suitable basis for a given class of smooth ppoly functions. Such a
class is specified by giving its breakpoint sequence, its order k, and the required smoothness across each of the

interior breakpoints. The corresponding B-spline basis is specified by giving its knot sequence t € ®RM. The specifi-
cation rule is as follows: If the class is to have all derivatives up to and including the j-th derivative continuous
across the interior breakpoint §;, then the number §; should occur k — j — 1 times in the knot sequence. Assum-
ing that €, and &, are the endpoints of the interval of interest, choose the first k knots equal to €, and the last k
knots equal to €. This can be done because the B-splines are defined to be right continuous near €, and left
continuous near §,..

= R{ng?mq\{q Usage Notes Chapter 3 Interpolation and Approximation 297

When the above construction is completed, a knot sequence t of length M is generated, and thereare m: =M — k
B-splines of order k, for example By, ..., By.1, spanning the ppoly functions on the interval with the indicated

smoothness. That is, each ppoly function in this class has a unique representation

p=aBotaBy+ ... +a, B,

as a linear combination of B-splines. A B-spline is a particularly compact ppoly function. B; is a nonnegative func-
tion that is nonzero only on the interval [t; t;+]. More precisely, the support of the j-th B-spline is [t; t.]. No ppoly
function in the same class (other than the zero function) has smaller support (i.e., vanishes on more intervals)
than a B-spline. This makes B-splines particularly attractive basis functions since the influence of any particular B-
spline coefficient extends only over a few intervals. When it is necessary to emphasize the dependence of the B-
spline on its parameters, we will use the notation B; ; to denote the i-th B-spline of order k for the knot sequence
t.

Cubic Splines

Cubic splines are smooth (i.e., C%, C" or C?), fourth-order ppoly functions. For historical and other reasons, cubic
splines are the most heavily used ppoly functions. Therefore, we provide special functions for their construction
and evaluation. These routines use the ppoly representation as described above for general ppoly functions (with
k=4).

We provide three cubic spline interpolation functions: imsl £ cub spline interp e cnd,

imsl f cub spline interp shape,and imsl f cub spline tcb. The function

imsl f cub spline interp e cnd allows the user to specify various endpoint conditions (such as the
value of the first or second derivative at the right and left points). The natural cubic spline, for example, can be
obtained using this function by setting the second derivative to zero at both endpoints. The function

imsl f cub spline interp shape isdesigned so that the shape of the curve matches the shape of the
data. In particular, one option of this function preserves the convexity of the data while the default attempts to
minimize oscillations. The function ims1 f cub spline tcb allows the user to specify tension, continuity
and bias parameters at each data point.

It is possible that the cubic spline interpolation functions will produce unsatisfactory results. For example, the
interpolant may not have the shape required by the user, or the data may be noisy and require a least-squares fit.
The interpolation function ims1 £ spline interp is more flexible, as it allows you to choose the knots and
order of the spline interpolant. We encourage the user to use this routine and exploit the flexibility provided.

Tensor Product Splines

The simplest method of obtaining multivariate interpolation and approximation functions is to take univariate
methods and form a multivariate method via tensor products. In the case of two-dimensional spline interpolation,
the derivation proceeds as follows. Let t, be a knot sequence for splines of order k,, and t, be a knot sequence

for splines of order k. Let N, + k, be the length of t,, and N,, + k, be the length of t,. Then, the tensor-product
spline has the following form.

= R{ng?mq\{q Usage Notes Chapter 3 Interpolation and Approximation 298

Ny=1IN—1
Z chmBn, kx, tx(x)Bm, ky, ty(y>
m=0 n=0

Given two sets of points

]
and

N
il

for which the corresponding univariate interpolation problem can be solved, the tensor-product interpolation
problem finds the coefficients ¢, SO that

Ny=INg-1

Z ZCntn,kx,tx<xi>Bm,ky,ty<yj> = fij

m=0 n=0
This problem can be solved efficiently by repeatedly solving univariate interpolation problems as described in de
Boor (1978, p. 347). Three-dimensional interpolation can be handled in an analogous manner. This chapter pro-
vides functions that compute the two-dimensional, tensor-product spline coefficients given two-dimensional
interpolation data (ims1 f spline 2d interp)and that compute the two-dimensional, tensor-product spline
coefficients for a tensor-product, least-squares problem (imsl1 f spline 2d least squares). In addition,
we provide evaluation, differentiation, and integration functions for the two-dimensional, tensor-product spline
functions. The relevant functions are ims1 f spline 2d value and imsl f spline 2d integral.

Scattered Data Interpolation

The IMSL C Math Library provides one function, ims1 £ scattered 2d interp, that returns values of an

interpolant to scattered data in the plane. This function is based on work by Akima (1978), which uses €' piece-
wise quintics on a triangular mesh.

Multi-dimensional Interpolation

imsl_f_spline nd interp computes a piecewise polynomial interpolant, of up to 15-th degree, to a function of
up to 7 variables, defined on a multi-dimensional grid.

Least Squares

The IMSL C Math Library includes functions for smoothing noisy data. The function

imsl f user fcn least squares cOmputes regressions with user-supplied functions. The function

imsl f spline least squares computes aleast-squares fit using splines with fixed knots or variable knots.
These functions produce cubic spline, least-squares fit by default. Optional arguments allow the user to choose

= ROQ}J?WH\{E: Usage Notes Chapter 3 Interpolation and Approximation 299

the order and the knot sequence. IMSL C Math Library also includes a tensor-product spline regression function
(imsl f spline 2d least squares) mentioned above. The function ims1 f radial scattered fit

computes an approximation to scattered data in RN using radial-basis functions.

In addition to the functions listed above, several functions in Chapter 10, “Statistics and Random Number Gener-
ation”, provide for polynomial regression and general linear regression.

Smoothing by Cubic Splines

One “smoothing spline” function is provided. The default action of ims1 £ cub spline smooth estimates a
smoothing parameter by cross-validation and then returns the cubic spline that smooths the data. If the user
wishes to supply a smoothing parameter, then this function returns the appropriate cubic spline.

Structures for Splines and Piecewise Polynomials

This optional section includes more details concerning the structures for splines and piecewise polynomials.

B-Splines

A spline may be viewed as a mapping with domain R9 and target R', where d and r are positive integers. For this
version of the IMSL C Math Library, only r = 1 is supported. Thus, if s is a spline, then for some d and r

s:Rd— wr
This implies that such a spline s must have d knot sequences and orders (one for each domain dimension). Thus,
associated with s, we have knots and orders

The precise form of the spline follows:

s(x) = (sp(X), ..., Sp-1(x)) X=(Xy, ..., Xq) € Rrd

where the following equation is true.

nd_rl nO—l

i
SAXx).= C; : B B _
1() E E Jop - J g1 jO’ kO’ [0... jd—l’ kd—l’ td 1

Jg-170 Jg=0
Note that n; is the number of knots in t' minus the order ;.

We store all the information for a spline in one structure called Imsi_f spline. (If the type is double, then the struc-
ture name is Imsl_d_spline, and the float becomes double.) The specification for this structure follows:

typedef struct {
int domain dim;
int target dim;

= ROQ}J?WH\{E: Usage Notes Chapter 3 Interpolation and Approximation 300

int *order;
int *num coef;
int *num_ knots;
float **knots;
float **coef;

} Imsl f spline;

The following function demonstrates how the contents of an Imsl_f_spline can be viewed:

#include <imsl.h>
#include <stdio.h>

void sp print (Imsl f spline *sp)

{

sp->domain dim) ;
sp->target dim);

$d\n", sp->order[i]);
$d\n", sp->num coef[i]);
$d\n", sp->num_knots[i]);

sp->knots[i] []]);

int 1, J;
printf ("Domain dimension: sd\n",
printf ("Target dimension: d\n\n",
for (1 = 0; 1 < sp->domain dim; i++) {
printf ("Domain #%d\n", (i + 1));
printf (" Order
printf (" # of coefficients
printf (" # of knots
printf (" Knots:\n") ;
for (J = 0; J < (sp->num_knots([i]); Jj++)
printf (" %8.3f\n",
}
/*
* Handle printing of 1D and 2D B-spline coefficients separately.
*/
if (sp->domain dim==1) {
imsl f write matrix("Spline Coefficients",
sp->num_coef[0], 1, sp->coef[0], 0);
}
if (sp->domain dim==2) {

/*

* Coefficients of 2D B-splines are stored in column-major order.
* To view the coefficients correctly we reverse the dimensions and
* use optional argument IMSL TRANSPOSE when calling

* imsl f write matrix()

*/

imsl f write matrix("Spline Coefficients",
sp->num_coef[1l], sp->num coef[0],
sp->coef[0], IMSL TRANSPOSE, 0);

=RogueWave

Usage Notes

Chapter 3 Interpolation and Approximation

301

Example

The data for this example comes from the function e* sin (x + y) on the rectangle [0, 3] X [0, 5]. This function is

sampled on a 50 x 25 grid and a tensor-product spline approximation is computed using

imsl f spline 2d least squares (). The contents of the spline structure are then printed using the

function sp_print () provided above.

#include <imsl.h>
void sp print(Imsl f spline *sp);

int main ()

{

#define NXDATA 50
#define NYDATA 25
/* Define function */

#define F(x,V) (float) (exp (x) *sin (x+y))

int j—/ jr'

float fdata [NXDATA] [NYDATA] ;

float xdata [NXDATA], ydata[NYDATA];

Imsl f spline *sp;

/* Set up grid */
for (1 = 0; 1 < NXDATA; 1i++)

xdata[i] = 3.*(float) i / ((float) (NXDATA-1)):;
for (1 = 0; 1 < NYDATA; i++)
ydata[i] = 5.* (float) 1 / ((float) (NYDATA-1));

/* Compute function values on grid */
for (1 = 0; 1 < NXDATA; i++)
for (3 = 0; j < NYDATA; j++)
fdata[i][J] = F(xdatali]l, ydatalj]):
/* Compute tensor-product fit */
sp = imsl f spline 2d least squares (NXDATA, &xdatal[0], NYDATA,

&ydata([0], &fdatalO]([O0], 5, 7,

/* Print contents of spline structure.
sp_print(sp);

Output
Domain dimension: 2
Target dimension: 1

Domain #1

Order 4

of coefficients 5

of knots 9

Knots:
0.000
0.000
0.000
0.000

= R{nggmq\{q Usage Notes Chapter 3 Interpolation and Approximation

302

1.500
3.000
3.000
3.000
3.000
Domain #2
Order 4
of coefficients 7
of knots 11
Knots:
0.000
0.000
0.000
0.000
1.250
2.500
3.750
5.000
5.000
5.000
5.000
Spline Coefficients
1 2 3 4 5
1 -0.02 0.43 1.34 0.87 -0.78
2 0.52 0.99 1.62 0.35 -1.40
3 3.35 4.99 6.16 -0.46 -6.45
4 10.43 7.44 -5.11 -16.78 -5.56
5 2.98 -5.24 -23.55 -18.74 11.62
6 7
1 -1.18 -1.05
2 -1.30 -0.95
3 -4.60 -2.79
4 7.10 10.21
5 21.49 20.07

Piecewise Polynomials

For ppoly functions, we view a ppoly as a mapping with domain 9 and target R where d and r are positive
integers. Thus, if pis a ppoly, then for some d and r the following is true.

p:RI — RT
For this version of the C MathLibrary, only r=d =1 is supported. See the section Piecewise Polynomials near the
beginning of this chapter for a detailed description of ppoly construction

We store all the information for a ppoly in one structure called Imsl_f ppoly. (If the type is double, then the struc-
ture name is Imsl_d_ppoly, and the float becomes double.) The following is the specification for this structure.

typedef struct {

= R{nggmq\{q Usage Notes Chapter 3 Interpolation and Approximation

303

int domain dim;

int target dim;

int *order;

int *num_coef;

int *num breakpoints;

float **breakpoints;
float **coef;
} Imsl f ppoly;

The following function demonstrates how the contents of an Ims[_f_ppoly can be viewed.

#include <imsl.h>

#include <stdio.h>

void pp print(Imsl f ppoly *pp)
{

int i, 3j, k;

printf ("Domain dimension: $d\n", pp->domain dim) ;
printf ("Target dimension: $d\n\n", pp->target dim);
for (1 = 0; i < pp->domain dim; i++) {
printf ("Domain #%d\n", (i + 1));
printf (" Order $d\n", pp->order[i]);
printf (" # of coefficients %d\n", pp->num coef[i]);
printf (" # of breakpoints %d\n",pp->num breakpoints[i]);
printf (" Breakpoints:\n") ;
for (J = 0; j < (pp->num breakpoints[i]); J++)
printf (" %$8.3f\n", pp->breakpoints[i][]]):

}

printf ("\nCoefficients:\n");
for (J = 0; j < ((pp—>num _breakpoints[0]) - 1); j++)
{
printf (" ppoly piece %44d", j + 1);
for (k = 0; k < (pp->order[0]); k++)
printf (" %9.3f ", pp->coef[0][] * (pp->order[0]) + k]);
printf ("\n");

Example

In this example, a cubic spline interpolant to a function fis computed. The contents of the ppoly structure are
then printed using the sample code pp_print () provided above.

#include <imsl.h>
void pp print (Imsl f ppoly *pp);

= R{ng?mq\{q Usage Notes Chapter 3 Interpolation and Approximation 304

int main ()

{
#define NDATA 11
/* Define function */

#define F(x) (float) (sin(15.0*x))
int i
float fdata [NDATA], xdata[NDATA], x, Vy;
Imsl f ppoly *ppoly;

/* Compute xdata and fdata */
; 1 < NDATA; i++) {
i] = (float)i /((float) (NDATA-1));
i] = F(xdatal[i]);

for (i = 0
xdata [
fdatal

/* Compute cubic spline interpolant */

ppoly = imsl f cub spline interp e cnd (NDATA, xdata, fdata,
/* Print contents of ppoly structure.

pp _print (ppoly);

Output
Domain dimension: 1
Target dimension: 1

Domain #1
Order 4
of coefficients 40
of breakpoints 11

Breakpoints:

0.000

0.100

0.200

0.300

0.400

0.500

0.600

0.700

0.800

0.900

1.000

Coefficients:

ppoly piece 1 0.000 23.414 -310.479
ppoly piece 2 0.997 -1.379 -185.387
ppoly piece 3 0.141 -13.663 -60.295
ppoly piece 4 -0.978 -3.218 269.203
ppoly piece 5 -0.279 13.919 73.541
ppoly piece 6 0.938 5.007 -251.787
ppoly piece 7 0.412 -13.201 -112.370
ppoly piece 8 -0.880 -6.734 241.707
ppoly piece 9 -0.537 11.677 126.505
ppoly piece 10 0.804 10.532 -149.385

1250.
1250.
3294.
-1956.
-3253.
1394.
3540.
-1152.
-2758.
-2758.

0);

*/

916
917
986
621
285
176
767
020
902
903

= R{nggmq\{q Usage Notes Chapter 3 Interpolation and Approximation

305

cub_spline_interp_e_cna

Computes a cubic spline interpolant, specifying various endpoint conditions. The default interpolant satisfies the
“not-a-knot” condition.

Synopsis
#include <ims1.h>

Imsl_f ppoly *ims1l f cub spline interp e cnd(intndata, float xdatal], float fdatal[],
..., 0)

The type Imsl_d_ppoly functionis ims1 d cub spline interp e cnd.

Required Arguments

int ndata (Input)
Number of data points.

float xdata[] (Input)
Array with ndata components containing the abscissas of the interpolation problem.

float £data[] (Input)
Array with ndata components containing the ordinates for the interpolation problem.

Return Value

A pointer to the structure that represents the cubic spline interpolant. If an interpolant cannot be computed,
then NULL is returned. To release this space, use ims1 free.

Synopsis with Optional Arguments
#include <ims1.h>
Imsl_f ppoly *imsl f cub spline interp e cnd(intndata, float xdatal], float fdatal],
IMSL LEFT,int ileft, float left,
IMSL RIGHT, int iright, float right,
IMSL PERIODIC,

0)

= R{ngg\(\fﬂ\{&: cub_spline_interp_e_cnd Chapter 3 Interpolation and Approximation

306

Optional Arguments

IMSL LEFT, intileft, float left (Input)
Set the value for the first or second derivative of the interpolant at the left endpoint. If ileft =/,
then the interpolant s satisfies

s(x) = 1eft

where x| is the leftmost abscissa. The only valid values for ileft are 1 or 2.

IMSL RIGHT,intiright, float right (Input)
Set the value for the first or second derivative of the interpolant at the right endpoint. If iright =1,
then the interpolant s satisfies

s(i)(XR)= right

where xg is the rightmost abscissa. The only valid values for iright are 1 or 2.

IMSL PERIODIC

Compute the C? periodic interpolant to the data. That is, we require

s(i)(xL) = s(i)(xR) i=0,1,2

where s, x|, and xg are defined above.

Description

The function ims1_f cub spline interp e cnd computes a C? cubic spline interpolant to a set of data
points (x;, fi) fori=0, ..., ndata — 1 = n. The breakpoints of the spline are the abscissas. We emphasize here that
for all the univariate interpolation functions, the abscissas need not be sorted. Endpoint conditions are to be
selected by the user. The user may specify “not-a-knot” or first derivative or second derivative at each endpoint,
or C? periodicity may be requested (see de Boor 1978, Chapter 4). If no defaults are selected, then the “not-a-
knot” spline interpolant is computed. If the IMSL PERIODIC keyword is selected, then all other keywords are

ignored; and a C? periodic interpolant is computed. In this case, if the fdata values at the left and right end-
points are not the same, then a warning message is issued; and we set the right value equal to the left. If

IMSL LEFT or IMSL RIGHT are selected (in the absence of IMSL PERIODIC), then the user has the ability
to select the values of the first or second derivative at either endpoint. The default case (when the keyword is not
used) is the “not-a-knot” condition on that endpoint. Thus, when no optional arguments are chosen, this function
produces the “not-a-knot” interpolant.

If the data (including the endpoint conditions) arise from the values of a smooth (say C*) function f, i.e. f, = fix),
then the error will behave in a predictable fashion. Let € be the breakpoint vector for the above spline interpo-
lant. Then, the maximum absolute error satisfies

= R{ngg\ﬂh’ﬂ\{&: cub_spline_interp_e_cnd Chapter 3 Interpolation and Approximation

307

)
”f_SH[fo,fn]SC”f |‘[50’§n]|§|4

where

I9E =i=0rnaX_1|é’i+1—5,-|

PR

For more details, see de Boor (1978, Chapters 4 and 5).

The return value for this function is a pointer to the structure Imsl_f ppoly. The calling program must receive this
in a pointer Imsl_f ppoly *ppoly. This structure contains all the information to determine the spline (stored as a
piecewise polynomial) that is computed by this function. For example, the following code sequence evaluates this

spline at x and returns the value in y

y = imsl f cub spline value (x, ppoly, 0)
The difference between the default (“not-a-knot”) spline and the interpolating cubic spline, which has first deriva-
tive set to 1 at the left end and the second derivative set to —90 at the right end, is illustrated in the following

figure.
1.25
- default ——
] end cond
]))
104 s As® = -90
n L Xb i
] ? \ ;" /
075 i l'l\ i
E |II -== 'II: "IIII
0.5] II i J.'. I_."I
41 i
1/ ; J"f
0.25 /! i
-1
1: Sgk ’ﬁ
0.0 B
0.25 . LU I A I A H A I R A R (N R B R I B B
0.0 0.2 0.4 0.6 0.8 1.0
Figure 3.1 — Two Interpolating Splines
Examples
Example 1

In this example, a cubic spline interpolant to a function fis computed. The values of this spline are then com-

pared with the exact function values. Since we are using the default settings, the interpolant is determined by the

“not-a-knot” condition (see de Boor 1978).

Chapter 3 Interpolation and Approximation

EE R{ngg\ﬂg\{q cub_spline_interp_e_cnd

308

#include <imsl.h>
#include <stdio.h>
#include <math.h>

#define NDATA 11
/* Define function */
#define F(x) (float) (sin(15.0*x))

int main ()

{

int i
float fdata [NDATA], xdata[NDATA], x, Vy;
Imsl f ppoly *ppoly;
/* Compute xdata and fdata */
for (i = 0; i < NDATA; i++) {
xdatal[i] = (float)i /((float) (NDATA-1));
fdata[i] = F(xdatal[il);

/* Compute cubic spline interpolant */
ppoly = imsl f cub spline interp e cnd (NDATA, xdata, fdata, 0);

/* Print results */
printf (" X F(x) Interpolant Error\n") ;
for (1 = 0; 1 < 2*NDATA-1; 1i++){
x = (float) i /(float) (2*NDATA-2) ;
y = imsl f cub spline value (x,ppoly,0);
printf (" %$6.3f %$10.3f $10.3f %10.4f\n", x, F(x), vy,
fabs (F(x)-y));

Output

X F(x) Interpolant Error
0.000 0.000 0.000 0.0000
0.050 0.682 0.809 0.1270
0.100 0.997 0.997 0.0000
0.150 0.778 0.723 0.0552
0.200 0.141 0.141 0.0000
0.250 -0.572 -0.549 0.0228
0.300 -0.978 -0.978 0.0000
0.350 -0.859 -0.843 0.0162
0.400 -0.279 -0.279 0.0000
0.450 0.450 0.441 0.0093
0.500 0.938 0.938 0.0000
0.550 0.923 0.903 0.0199
0.600 0.412 0.412 0.0000
0.650 -0.320 -0.315 0.0049
0.700 -0.880 -0.880 0.0000
0.750 -0.968 -0.938 0.0295

= R{ngg\ﬂh’ﬂ\{&: cub_spline_interp_e_cnd Chapter 3 Interpolation and Approximation

309

0.800 -0.537 -0.537 0.0000
0.850 0.183 0.148 0.0347
0.900 0.804 0.804 0.0000
0.950 0.994 1.086 0.0926
1.000 0.650 0.650 0.0000
Example 2

In this example, a cubic spline interpolant to a function fis computed. The value of the derivative at the left end-
point and the value of the second derivative at the right endpoint are specified. The values of this spline are then
compared with the exact function values.

#include <imsl.h>
#include <stdio.h>
#include <math.h>

#define NDATA 11
/* Define function */
#define F (x) (float) (sin(15.0*x))

int main ()

{

int i, ileft, iright;
float left, right, x, vy, fdata[NDATA], xdata[NDATA];
Imsl f ppoly *pp;

/* Compute xdata and fdata */
for (i = 0; i < NDATA; i++) {
xdata[i] = (float) (i)/ (NDATA-1);
fdata[i] = F(xdatal[i]):;

/* Specify end conditions */

ileft = 1;
left = 0.0;
iright = 2;

right =-225.0*%sin (15.0);
/* Compute cubic spline interpolant */
pp = imsl f cub spline interp e cnd(NDATA, xdata, fdata,
IMSL LEFT, ileft, left,
IMSL RIGHT, iright, right,
0);
/* Print results for first half */
/* of interval */
printf (" X F(x) Interpolant Error\n\n") ;
for (i=0; i<NDATA; i++) {
X = (float) (1)/ (float) (2*NDATA-2) ;
y = imsl f cub spline value (x,pp,0);
printf (" %6.3f %10.3f %10.3f %10.4f\n", x, F(x), vy,
fabs (F(x)-y));

= R{ng?mq\{q cub_spline_interp_e_cnd Chapter 3 Interpolation and Approximation 310

Output

X F(x) Interpolant Error
0.000 0.000 0.000 0.0000
0.050 0.682 0.438 0.2441
0.100 0.997 0.997 0.0000
0.150 0.778 0.822 0.0442
0.200 0.141 0.141 0.0000
0.250 -0.572 -0.575 0.0038
0.300 -0.978 -0.978 0.0000
0.350 -0.859 -0.836 0.0233
0.400 -0.279 -0.279 0.0000
0.450 0.450 0.439 0.0111
0.500 0.938 0.938 0.0000
Example 3

This example computes the natural cubic spline interpolant to a function f by forcing the second derivative of the
interpolant to be zero at both endpoints. As in the previous example, the exact function values are computed
with the values of the spline.

#include <imsl.h>
#include <stdio.h>
#include <math.h>

#define NDATA 11
/* Define function */
#define F(x) (float) (sin(15.0*x))

int main ()

{

int i, ileft, iright;

float left, right, x, y, fdata[NDATA],
xdata [NDATA] ;

Imsl f ppoly *pp;

/* Compute xdata and fdata */
for (i = 0; i < NDATA; i++) {
xdata[i] = (float) (i)/ (NDATA-1);
fdata[1i] F(xdatal[i]);

}

/* Specify end conditions */

ileft = 2;
left = 0.0;
iright = 2;

right = 0.0;
/* Compute cubic spline interpolant */
pp = imsl f cub spline interp e cnd(NDATA, xdata, fdata,
IMSL LEFT, ileft, left,
IMSL RIGHT, iright, right,
0)s

= ROQ}J?WH\{E: cub_spline_interp_e_cnd Chapter 3 Interpolation and Approximation 311

/* Print results for first half */
/* of interval */
printf (" X F(x) Interpolant Error\n\n") ;
for (i = 0; i < NDATA; i++){
x = (float) (i) / (float) (2*NDATA-2) ;
y imsl f cub spline value(x,pp,0);
printf (" %6.3f %10.3f %10.3f %10.4f\n", x, F(x), vy,
fabs (F(x)-y))

}

Output

X F(x) Interpolant Error
0.000 0.000 0.000 0.0000
0.050 0.682 0.667 0.0150
0.100 0.997 0.997 0.0000
0.150 0.778 0.761 0.0172
0.200 0.141 0.141 0.0000
0.250 -0.572 -0.559 0.0126
0.300 -0.978 -0.978 0.0000
0.350 -0.859 -0.840 0.0189
0.400 -0.279 -0.279 0.0000
0.450 0.450 0.440 0.0098
0.500 0.938 0.938 0.0000
Example 4

This example computes the cubic spline interpolant to a functions, and imposes the periodic end conditions
s(a) = s(b), s'(a) = s'(b), and s"(a) = s"(b), where a is the leftmost abscissa and b is the rightmost abscissa.

= R{nggmq\{q cub_spline_interp_e_cnd Chapter 3 Interpolation and Approximation 312

#include <imsl.h>
#include <stdio.h>
#include <math.h>

#define NDATA 11
/* Define function*/
#define F(x) (float) (sin(x))

int main ()

{

int i
float X, y, twopi, fdata[NDATA], xdata[NDATA];
Imsl f ppoly *pp;

/* Compute xdata and fdata */
twopi = 2.0*imsl f constant ("pi", 0);
for (i = 0; i < NDATA; i++) {
xdata[i] = twopi* (float) (i) / (NDATA-1);
fdatal[1i] F(xdatal[i]);

}
fdata [NDATA-1] = fdatal[0];
/* Compute periodic cubic spline */
/* interpolant */
pp = imsl f cub spline interp e cnd(NDATA, xdata, fdata,
IMSL PERIODIC,
0);
/* Print results for first half */
/* of interval */
printf (" X F(x) Interpolant Error\n\n") ;
for (1 = 0; 1 < NDATA; i++){
X = (twopi/20.)*i;
y = imsl f cub spline value(x, pp, 0);
printf (" %$6.3f %$10.3f $10.3f %10.4f\n",x,F(x), v,
fabs (F(x)-y));

Output

X F(x) Interpolant Error
0.000 0.000 0.000 0.0000
0.314 0.309 0.309 0.0001
0.628 0.588 0.588 0.0000
0.942 0.809 0.809 0.0004
1.257 0.951 0.951 0.0000
1.571 1.000 1.000 0.0004
1.885 0.951 0.951 0.0000
2.199 0.809 0.809 0.0004
2.513 0.588 0.588 0.0000
2.827 0.309 0.3